--- library_name: peft license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer model-index: - name: whosper-large results: [] --- # whosper-large This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 3.0514 | 1.0 | 1732 | 0.6824 | | 2.2658 | 2.0 | 3464 | 0.5998 | | 2.0274 | 3.0 | 5196 | 0.5282 | | 1.48 | 4.0 | 6928 | 0.4793 | | 1.1693 | 5.0 | 8660 | 0.4441 | | 0.8762 | 5.9970 | 10386 | 0.4371 | ### Framework versions - PEFT 0.14.1.dev0 - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0