--- library_name: peft license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer model-index: - name: bambara-whisper-large-sw-v1 results: [] --- # bambara-whisper-large-sw-v1 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5317 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 48 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7738 | 1.0 | 775 | 0.7051 | | 0.618 | 2.0 | 1550 | 0.6038 | | 0.4884 | 3.0 | 2325 | 0.5506 | | 0.4173 | 4.0 | 3100 | 0.5317 | ### Framework versions - PEFT 0.14.1.dev0 - Transformers 4.49.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0