--- license: mit --- Part of Advanced NLP Project for Team Shrine - Adnan Qidwai, Harshit Karwal and Shrikara Arun. CleanCaption is an image captioning model that forget an object from the image when generating the caption. It is a finetuned version of `microsoft/Florence-2-large-ft`. Usage: ```python from transformers import AutoProcessor, AutoModelForCausalLM from PIL import Image import torch device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "sudokara/CleanCaption", trust_remote_code=True ).eval().to(device) def forget(prompt, image_path): image = Image.open(image_path).convert("RGB") prompt = f"Forget from caption: {str(prompt)}".strip(' :') inputs = processor(text=prompt, images=image, return_tensors="pt").to(device) generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, do_sample=True, num_beams=3, ) return processor.decode(generated_ids[0]).replace('', '').replace('', '') image_path = "image.png" print(forget(image_path = image_path, prompt = "water")) ```