File size: 1,316 Bytes
df35e07 d0c8a64 1ba891a daf7606 1ba891a 4298e66 df35e07 1ba891a df35e07 1ba891a df35e07 c055ea7 1ba891a df35e07 1ba891a ea4fe4a df35e07 1ba891a df35e07 1ba891a df35e07 1ba891a 561055f da556a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
library_name: transformers
tags:
- unsloth
license: apache-2.0
datasets:
- lighteval/MATH-Hard
language:
- en
- th
- pt
- es
- de
- fr
- it
- hi
base_model:
- meta-llama/Llama-3.2-3B-Instruct
metrics:
- accuracy
---
![Komodo-Logo](Komodo-Logo.jpg)
This version of Komodo is a Llama-3.2-3B-Instruct finetuned model on lighteval/MATH-Hard dataset to increase math performance of the base model.
This model is 4bit-quantized. You should import it 8bit if you want to use 3B parameters!
Make sure you installed 'bitsandbytes' library before import.
Example Usage:
```py
tokenizer = AutoTokenizer.from_pretrained("suayptalha/Komodo-Llama-3.2-8B")
model = AutoModelForCausalLM.from_pretrained("suayptalha/Komodo-Llama-3.2-8B")
example_prompt = """Below is a math question and its solution:
Question: {}
Solution: {}"""
inputs = tokenizer(
[
example_prompt.format(
"", #Question here
"", #Solution here (for training)
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 50, use_cache = True)
tokenizer.batch_decode(outputs)
```
<a href="https://www.buymeacoffee.com/suayptalha" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a> |