File size: 1,316 Bytes
df35e07
 
d0c8a64
 
1ba891a
 
 
 
 
daf7606
 
 
 
 
 
 
1ba891a
 
4298e66
 
df35e07
 
1ba891a
df35e07
1ba891a
df35e07
c055ea7
1ba891a
df35e07
1ba891a
 
ea4fe4a
 
df35e07
1ba891a
 
 
df35e07
1ba891a
 
 
 
 
 
 
df35e07
1ba891a
 
561055f
 
da556a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
library_name: transformers
tags:
- unsloth
license: apache-2.0
datasets:
- lighteval/MATH-Hard
language:
- en
- th
- pt
- es
- de
- fr
- it
- hi
base_model:
- meta-llama/Llama-3.2-3B-Instruct
metrics:
- accuracy
---

![Komodo-Logo](Komodo-Logo.jpg)

This version of Komodo is a Llama-3.2-3B-Instruct finetuned model on lighteval/MATH-Hard dataset to increase math performance of the base model.

This model is 4bit-quantized. You should import it 8bit if you want to use 3B parameters!
Make sure you installed 'bitsandbytes' library before import.

Example Usage:
```py
tokenizer = AutoTokenizer.from_pretrained("suayptalha/Komodo-Llama-3.2-8B")
model = AutoModelForCausalLM.from_pretrained("suayptalha/Komodo-Llama-3.2-8B")

example_prompt = """Below is a math question and its solution:
Question: {}
Solution: {}"""

inputs = tokenizer(
[
    example_prompt.format(
        "", #Question here
        "", #Solution here (for training)
    )
], return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 50, use_cache = True)
tokenizer.batch_decode(outputs)
```

<a href="https://www.buymeacoffee.com/suayptalha" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 60px !important;width: 217px !important;" ></a>