LunarLander / config.json
stuti-srinath's picture
Upload PPO LunarLander-v2 trained agent
dfa4352 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ea6f7846340>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ea6f78463e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ea6f7846480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ea6f7846520>", "_build": "<function ActorCriticPolicy._build at 0x7ea6f78465c0>", "forward": "<function ActorCriticPolicy.forward at 0x7ea6f7846660>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ea6f7846700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ea6f78467a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ea6f7846840>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ea6f78468e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ea6f7846980>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ea6f7846a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ea6f844a5c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1740734232766959337, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGby47zD2Q26Eq4juAS6iLNPokc6SL49NwAAgD8AAIA/ACwRPK61o7o7Ro44HkNDM9hAAjq+baO3AACAPwAAgD+ALlM9w2kUuiOXPDqpIII19YNZO95IX7kAAIA/AACAPwDLhL1IrY669Udbu/FlczguKvw6TqDuOQAAgD8AAIA/AFCGO8NVOrpI8fC62TYmtsaOGTuM0w06AACAPwAAgD/NOJC84aCeurpPnzvF6CU4KN7POVWVaroAAIA/AACAP03RiT1tkAY/paXavWbznL6H94k8V+nEvAAAAAAAAAAA88CQvVyHbLrtyOG5rejatDk3KjtqYgQ5AACAPwAAgD8aO0k9rkmaulghgToTVAE1XSmQubQMlbkAAIA/AACAP5rNAT1yS7A/HpJJPua/lb7Gyvc8HwMOPQAAAAAAAAAAZgipPI+edLr4Lfu5tYQbNrSR4rkalRI5AACAPwAAgD+ac6q8j0o1uiaWiTmXXZM0GQcpO3MKo7gAAIA/AACAPwBCej2Phlm6Am2dOu+crjM6Z4m7Goa2uQAAgD8AAIA/5vwXPXvenbrQUYI7Xiq5NSeciLoyP5a6AACAPwAAgD+AMxC94YSEulrPYjs0KIU4wpcPOh4QCboAAIA/AACAP83ZdL2P9nm6gLWGO9DOVLYt32K628xLtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGKbVDrqt5mMAWyUTegDjAF0lEdAlOGYtDlYEHV9lChoBkdAYpuIppeu3mgHTegDaAhHQJUARIRRMvh1fZQoaAZHQGOLl7+kxh5oB03oA2gIR0CVA5TlkpZwdX2UKGgGR0BfdcTnJT2naAdN6ANoCEdAlQTJWNm16XV9lChoBkdAYVqCrcTJyWgHTegDaAhHQJUFn1bqyGB1fZQoaAZHQGXiUWVNYbNoB03oA2gIR0CVBqAmzBykdX2UKGgGR0BiVYyTINmUaAdN6ANoCEdAlRFAxBVuJnV9lChoBkdAZKdm3fAKv2gHTegDaAhHQJUZa66J66d1fZQoaAZHQF9vg5R0lqtoB03oA2gIR0CVILvVVghKdX2UKGgGR0Bj8k5CF9KFaAdN6ANoCEdAlSE+RxLkCHV9lChoBkdAZ4tbZezD42gHTegDaAhHQJUimocaOxV1fZQoaAZHQGVjMtsenydoB03oA2gIR0CVJZ9WZJCjdX2UKGgGR0BjXNxQzk6taAdN6ANoCEdAlSbJdfLLZHV9lChoBkdAZU1NoJzDGmgHTegDaAhHQJUpNX0XgtR1fZQoaAZHQGS2Mo+fRNRoB03oA2gIR0CVKhmZE2HddX2UKGgGR0Bi1jPY4ACGaAdN6ANoCEdAlS0UDZDiO3V9lChoBkdAYu5U96kZaWgHTegDaAhHQJUuKneizs11fZQoaAZHQGZ59LpRoAZoB03oA2gIR0CVTvBiCrcTdX2UKGgGR0BlKyaoddVvaAdN6ANoCEdAlVISOWBz3nV9lChoBkdAZ2PT72tdRmgHTegDaAhHQJVTJ0aIeo11fZQoaAZHQGYls0YTCchoB03oA2gIR0CVU+9ovi97dX2UKGgGR0BknC20AtFsaAdN6ANoCEdAlVTt6HCXQnV9lChoBkdAZEruvUz9CWgHTegDaAhHQJVcpcbBGhF1fZQoaAZHQGIvDFZPl+5oB03oA2gIR0CVY/QCjk+5dX2UKGgGR0Bk0zpPhybQaAdN6ANoCEdAlWtFNDc/MXV9lChoBkdAZ2Bk0aZQYWgHTegDaAhHQJVr6TmnwXt1fZQoaAZHQGJrzo+wC8xoB03oA2gIR0CVbZNe+mFbdX2UKGgGR0BkzTvkRzzVaAdN6ANoCEdAlXEKbayrxXV9lChoBkdAYGm8pTdcjmgHTegDaAhHQJVybWMCLdh1fZQoaAZHQGShRfv4M4NoB03oA2gIR0CVdHjMmnfmdX2UKGgGR0Bh6WHxjJ+2aAdN6ANoCEdAlXUvvnbItHV9lChoBkdAY9axFiKBNGgHTegDaAhHQJV3iuLaVUx1fZQoaAZHQGKNieVcD8toB03oA2gIR0CVeHUedTYNdX2UKGgGR0BmfWfdyksSaAdN6ANoCEdAlZZO6d1+zHV9lChoBkdAQ9Y+Sr5qM2gHTQsBaAhHQJWXdnvlU6x1fZQoaAZHQF+iZOzposZoB03oA2gIR0CVmUlGgBcSdX2UKGgGR0BhuDqnm7rcaAdN6ANoCEdAlZphJVbRnnV9lChoBkdAZYnYYBNmDmgHTegDaAhHQJWbQxvegth1fZQoaAZHQGWzi/oJRfpoB03oA2gIR0CVnG3azu4PdX2UKGgGR0BjrPUaya/iaAdN6ANoCEdAlaYbhrFfiXV9lChoBkdAaGXmZE2HcmgHTegDaAhHQJWuMTWXkYJ1fZQoaAZHQGfFR/mT1TRoB03oA2gIR0CVtnCD28IzdX2UKGgGR0Bj+gtvn8sMaAdN6ANoCEdAlbcELUkOZ3V9lChoBkdAY3F9BKL88GgHTegDaAhHQJW4dUHY6GR1fZQoaAZHQGHu7hNucc5oB03oA2gIR0CVu5oUzsQedX2UKGgGR0BkcF3yI55raAdN6ANoCEdAlbzJyQxN7HV9lChoBkdAZwlVXmvGImgHTegDaAhHQJW/GRmseXB1fZQoaAZHQGDGljmSyMVoB03oA2gIR0CVv/MxoIv8dX2UKGgGR0Bf5bEYO2AoaAdN6ANoCEdAlcLdRR/EwXV9lChoBkdAYs5xTbWVeWgHTegDaAhHQJXnU4Pwuul1fZQoaAZHQGMB5AIIF/xoB03oA2gIR0CV6K+o99tudX2UKGgGR0Bh2zHfdhy9aAdN6ANoCEdAlerBc7hegXV9lChoBkdAZ0vsHB1s+GgHTegDaAhHQJXr8TwlSjx1fZQoaAZHQGRrKc/dIoVoB03oA2gIR0CV7NY4yXUpdX2UKGgGR0BgMVzySV4YaAdN6ANoCEdAle3U3CKrJnV9lChoBkdAZCg3irDIimgHTegDaAhHQJX2RaiblRx1fZQoaAZHQGObdZq20AtoB03oA2gIR0CV/34L1EmZdX2UKGgGR0Bhh7TKDCgsaAdN6ANoCEdAlghC5/b0v3V9lChoBkdAXz7srupjt2gHTegDaAhHQJYIx2xIJ7d1fZQoaAZHQF5YIqslsxhoB03oA2gIR0CWCg0EX+ERdX2UKGgGR0Bla0rZrYXgaAdN6ANoCEdAlgzBgZ0jknV9lChoBkdAYNzD8cdYGWgHTegDaAhHQJYN0rbxmTV1fZQoaAZHQGPvGqPwNLFoB03oA2gIR0CWD+ebNKRMdX2UKGgGR0Bocqq+8Gs4aAdN6ANoCEdAlhCqTnq3VnV9lChoBkdAZEDvAGjbjGgHTegDaAhHQJYTkC0WuYB1fZQoaAZHQGH1zUiILw5oB03oA2gIR0CWNoi704BFdX2UKGgGR0Bowdmg8KXwaAdN6ANoCEdAljfTJU5uInV9lChoBkdAZr/o8IRh+mgHTegDaAhHQJY5wNjLB9F1fZQoaAZHQGZnIX9BKL9oB03oA2gIR0CWOtlb/wRXdX2UKGgGR0BhwGNT987ZaAdN6ANoCEdAljuj2rXDnHV9lChoBkdAYKIrsjVx0mgHTegDaAhHQJY8eji4rjJ1fZQoaAZHQGL1PHktEohoB03oA2gIR0CWRAID5j6OdX2UKGgGR0BiG4DHOryUaAdN6ANoCEdAlktQ+dK/VXV9lChoBkdAZTQCjk+5fGgHTegDaAhHQJZSdaUzKtB1fZQoaAZHQGDqwV0tAcFoB03oA2gIR0CWUu9xp+MIdX2UKGgGR0BjbYj+rELqaAdN6ANoCEdAllQo1pCa7XV9lChoBkdAYBtsPatcOmgHTegDaAhHQJZW2SFGoaV1fZQoaAZHQGKCL3TNMXdoB03oA2gIR0CWV+zaK1ohdX2UKGgGR0BkcU4PwuuiaAdN6ANoCEdAlloM4HX2/XV9lChoBkdAYHXfKISDiGgHTegDaAhHQJZaxoexOcl1fZQoaAZHQGQA2QXAM2FoB03oA2gIR0CWXelOoHcDdX2UKGgGR0BefJtix3V1aAdN6ANoCEdAln9eOOsDGXV9lChoBkdAZ+Ho24uscWgHTegDaAhHQJaAelKsdT51fZQoaAZHQGJIXAVO9FpoB03oA2gIR0CWgi82rGR3dX2UKGgGR0BgEvjwQUYbaAdN6ANoCEdAloMmJFb3XnV9lChoBkdAaL1Nt65Xl2gHTegDaAhHQJaDzL8rI5p1fZQoaAZHQGcWtix3V09oB03oA2gIR0CWhI2b5M11dX2UKGgGR0BjdoLux8lYaAdN6ANoCEdAlotY2n8893V9lChoBkdAaAUyRjjJdWgHTegDaAhHQJaUPKaG5+Z1fZQoaAZHQHI8tGAkLQZoB01HAWgIR0CWljqfOD8MdX2UKGgGR0BoMQ1DSgGsaAdN6ANoCEdAlpttAC4jKXV9lChoBkdAaBtmRvFWGWgHTegDaAhHQJab316E8JV1fZQoaAZHQGTpAC4jKPpoB03oA2gIR0CWnQ29L6DXdX2UKGgGR0BnR5rk8zRAaAdN6ANoCEdAlp+jnaFmF3V9lChoBkdAYDgC2+fyw2gHTegDaAhHQJagnrSmZVp1fZQoaAZHQGNQZ/b0voNoB03oA2gIR0CWoo/KyOaOdX2UKGgGR0BmUCHIp6QeaAdN6ANoCEdAlqNDuv2XcHV9lChoBkdAZfSaXKKYRmgHTegDaAhHQJal5+c6Nl11fZQoaAZHQHDgKJEYwZhoB02GAmgIR0CWrp+7Dl5odX2UKGgGR0Bjgoo/iYLLaAdN6ANoCEdAlrSMxO+IuXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}