--- library_name: transformers license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - generator metrics: - accuracy model-index: - name: mBERT-4 results: [] --- # mBERT-4 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.6556 - Accuracy: 0.8684 - Micro Precision: 0.8684 - Micro Recall: 0.8684 - Micro F1: 0.8684 - Macro Precision: 0.7082 - Macro Recall: 0.7108 - Macro F1: 0.6956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------------:|:------------:|:--------:|:---------------:|:------------:|:--------:| | 1.4568 | 1.0 | 868 | 0.6532 | 0.8105 | 0.8105 | 0.8105 | 0.8105 | 0.4658 | 0.4779 | 0.4577 | | 0.6665 | 2.0 | 1736 | 0.4579 | 0.8789 | 0.8789 | 0.8789 | 0.8789 | 0.7403 | 0.7275 | 0.7240 | | 0.4735 | 3.0 | 2604 | 0.4363 | 0.8737 | 0.8737 | 0.8737 | 0.8737 | 0.6803 | 0.6664 | 0.6622 | | 0.352 | 4.0 | 3472 | 0.4537 | 0.8737 | 0.8737 | 0.8737 | 0.8737 | 0.7160 | 0.6909 | 0.6991 | | 0.2391 | 5.0 | 4340 | 0.5271 | 0.8789 | 0.8789 | 0.8789 | 0.8789 | 0.7445 | 0.7186 | 0.7231 | | 0.176 | 6.0 | 5208 | 0.5275 | 0.8895 | 0.8895 | 0.8895 | 0.8895 | 0.7469 | 0.7596 | 0.7410 | | 0.108 | 7.0 | 6076 | 0.6555 | 0.8737 | 0.8737 | 0.8737 | 0.8737 | 0.7634 | 0.7744 | 0.7496 | | 0.0903 | 8.0 | 6944 | 0.6556 | 0.8684 | 0.8684 | 0.8684 | 0.8684 | 0.7082 | 0.7108 | 0.6956 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3