--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8427382053654024 - name: Recall type: recall value: 0.8793436293436293 - name: F1 type: f1 value: 0.8606518658478979 - name: Accuracy type: accuracy value: 0.9671736925974214 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2674 - Precision: 0.8427 - Recall: 0.8793 - F1: 0.8607 - Accuracy: 0.9672 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5221 | 1.11 | 500 | 0.1718 | 0.6648 | 0.8012 | 0.7266 | 0.9535 | | 0.1777 | 2.22 | 1000 | 0.1397 | 0.7499 | 0.8393 | 0.7921 | 0.9627 | | 0.1321 | 3.33 | 1500 | 0.1383 | 0.7760 | 0.8711 | 0.8208 | 0.9655 | | 0.1132 | 4.44 | 2000 | 0.1456 | 0.7646 | 0.8542 | 0.8069 | 0.9636 | | 0.1008 | 5.56 | 2500 | 0.1442 | 0.7750 | 0.8692 | 0.8194 | 0.9648 | | 0.0782 | 6.67 | 3000 | 0.1516 | 0.8107 | 0.8663 | 0.8376 | 0.9657 | | 0.0692 | 7.78 | 3500 | 0.1690 | 0.8023 | 0.8620 | 0.8311 | 0.9660 | | 0.0582 | 8.89 | 4000 | 0.1591 | 0.8125 | 0.8847 | 0.8470 | 0.9672 | | 0.0511 | 10.0 | 4500 | 0.1813 | 0.8033 | 0.8832 | 0.8414 | 0.9661 | | 0.0432 | 11.11 | 5000 | 0.1833 | 0.8231 | 0.8822 | 0.8516 | 0.9669 | | 0.0381 | 12.22 | 5500 | 0.2097 | 0.8062 | 0.8634 | 0.8338 | 0.9659 | | 0.0328 | 13.33 | 6000 | 0.2043 | 0.8026 | 0.8711 | 0.8355 | 0.9661 | | 0.0292 | 14.44 | 6500 | 0.2217 | 0.8255 | 0.8769 | 0.8505 | 0.9669 | | 0.0247 | 15.56 | 7000 | 0.2411 | 0.8297 | 0.8745 | 0.8515 | 0.9667 | | 0.0206 | 16.67 | 7500 | 0.2425 | 0.8255 | 0.8764 | 0.8502 | 0.9663 | | 0.0184 | 17.78 | 8000 | 0.2405 | 0.8329 | 0.8586 | 0.8455 | 0.9668 | | 0.0157 | 18.89 | 8500 | 0.2521 | 0.8314 | 0.8832 | 0.8565 | 0.9677 | | 0.0134 | 20.0 | 9000 | 0.2504 | 0.8349 | 0.8764 | 0.8552 | 0.9671 | | 0.0116 | 21.11 | 9500 | 0.2570 | 0.8344 | 0.8779 | 0.8556 | 0.9678 | | 0.0109 | 22.22 | 10000 | 0.2570 | 0.8320 | 0.8793 | 0.8550 | 0.9677 | | 0.0093 | 23.33 | 10500 | 0.2639 | 0.8373 | 0.8793 | 0.8578 | 0.9674 | | 0.0086 | 24.44 | 11000 | 0.2674 | 0.8427 | 0.8793 | 0.8607 | 0.9672 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0