--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8615819209039548 - name: Recall type: recall value: 0.8818669971086328 - name: F1 type: f1 value: 0.8716064502959787 - name: Accuracy type: accuracy value: 0.9709691438504998 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1178 - Precision: 0.8616 - Recall: 0.8819 - F1: 0.8716 - Accuracy: 0.9710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 225 | 0.1357 | 0.7953 | 0.8315 | 0.8130 | 0.9620 | | No log | 2.0 | 450 | 0.1056 | 0.8245 | 0.8691 | 0.8462 | 0.9687 | | 0.21 | 3.0 | 675 | 0.1064 | 0.8487 | 0.8831 | 0.8656 | 0.9698 | | 0.21 | 4.0 | 900 | 0.1198 | 0.8442 | 0.8839 | 0.8636 | 0.9704 | | 0.0589 | 5.0 | 1125 | 0.1178 | 0.8616 | 0.8819 | 0.8716 | 0.9710 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0