--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8475513428120063 - name: Recall type: recall value: 0.8864105741429161 - name: F1 type: f1 value: 0.8665455279628508 - name: Accuracy type: accuracy value: 0.9683326090105752 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1632 - Precision: 0.8476 - Recall: 0.8864 - F1: 0.8665 - Accuracy: 0.9683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.208 | 1.0 | 7193 | 0.1642 | 0.8031 | 0.8509 | 0.8263 | 0.9620 | | 0.149 | 2.0 | 14386 | 0.1812 | 0.8426 | 0.8781 | 0.8600 | 0.9664 | | 0.0798 | 3.0 | 21579 | 0.1632 | 0.8476 | 0.8864 | 0.8665 | 0.9683 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0