--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8359161349134002 - name: Recall type: recall value: 0.8851351351351351 - name: F1 type: f1 value: 0.8598218471636193 - name: Accuracy type: accuracy value: 0.9700420107199769 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1918 - Precision: 0.8359 - Recall: 0.8851 - F1: 0.8598 - Accuracy: 0.9700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2903 | 2.22 | 500 | 0.1438 | 0.7586 | 0.8417 | 0.7980 | 0.9626 | | 0.1147 | 4.44 | 1000 | 0.1401 | 0.7866 | 0.8629 | 0.8230 | 0.9660 | | 0.0796 | 6.67 | 1500 | 0.1402 | 0.7956 | 0.8755 | 0.8336 | 0.9677 | | 0.0561 | 8.89 | 2000 | 0.1419 | 0.8094 | 0.8793 | 0.8429 | 0.9700 | | 0.0416 | 11.11 | 2500 | 0.1562 | 0.8271 | 0.8793 | 0.8524 | 0.9687 | | 0.0306 | 13.33 | 3000 | 0.1761 | 0.8309 | 0.8890 | 0.8589 | 0.9702 | | 0.0233 | 15.56 | 3500 | 0.1785 | 0.8332 | 0.8798 | 0.8559 | 0.9701 | | 0.0188 | 17.78 | 4000 | 0.1875 | 0.8362 | 0.8847 | 0.8598 | 0.9694 | | 0.015 | 20.0 | 4500 | 0.1918 | 0.8359 | 0.8851 | 0.8598 | 0.9700 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0