--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC2_0_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8574273197929112 - name: Recall type: recall value: 0.889301941346551 - name: F1 type: f1 value: 0.8730738037307381 - name: Accuracy type: accuracy value: 0.9718673040706939 --- # CNEC2_0_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1905 - Precision: 0.8574 - Recall: 0.8893 - F1: 0.8731 - Accuracy: 0.9719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2136 | 1.0 | 7193 | 0.1833 | 0.7605 | 0.8513 | 0.8034 | 0.9620 | | 0.1556 | 2.0 | 14386 | 0.1683 | 0.8282 | 0.8881 | 0.8571 | 0.9689 | | 0.1154 | 3.0 | 21579 | 0.1599 | 0.8409 | 0.8819 | 0.8609 | 0.9703 | | 0.0522 | 4.0 | 28772 | 0.1905 | 0.8574 | 0.8893 | 0.8731 | 0.9719 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0