stulcrad commited on
Commit
52db405
·
verified ·
1 Parent(s): 2eb587d

Model save

Browse files
Files changed (1) hide show
  1. README.md +17 -19
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8615819209039548
29
  - name: Recall
30
  type: recall
31
- value: 0.8818669971086328
32
  - name: F1
33
  type: f1
34
- value: 0.8716064502959787
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9709691438504998
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1178
48
- - Precision: 0.8616
49
- - Recall: 0.8819
50
- - F1: 0.8716
51
- - Accuracy: 0.9710
52
 
53
  ## Model description
54
 
@@ -68,22 +68,20 @@ More information needed
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
- - train_batch_size: 32
72
- - eval_batch_size: 32
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
- - num_epochs: 5
77
 
78
  ### Training results
79
 
80
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | No log | 1.0 | 225 | 0.1357 | 0.7953 | 0.8315 | 0.8130 | 0.9620 |
83
- | No log | 2.0 | 450 | 0.1056 | 0.8245 | 0.8691 | 0.8462 | 0.9687 |
84
- | 0.21 | 3.0 | 675 | 0.1064 | 0.8487 | 0.8831 | 0.8656 | 0.9698 |
85
- | 0.21 | 4.0 | 900 | 0.1198 | 0.8442 | 0.8839 | 0.8636 | 0.9704 |
86
- | 0.0589 | 5.0 | 1125 | 0.1178 | 0.8616 | 0.8819 | 0.8716 | 0.9710 |
87
 
88
 
89
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8475513428120063
29
  - name: Recall
30
  type: recall
31
+ value: 0.8864105741429161
32
  - name: F1
33
  type: f1
34
+ value: 0.8665455279628508
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9683326090105752
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1632
48
+ - Precision: 0.8476
49
+ - Recall: 0.8864
50
+ - F1: 0.8665
51
+ - Accuracy: 0.9683
52
 
53
  ## Model description
54
 
 
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
+ - train_batch_size: 1
72
+ - eval_batch_size: 1
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
+ - num_epochs: 3
77
 
78
  ### Training results
79
 
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.208 | 1.0 | 7193 | 0.1642 | 0.8031 | 0.8509 | 0.8263 | 0.9620 |
83
+ | 0.149 | 2.0 | 14386 | 0.1812 | 0.8426 | 0.8781 | 0.8600 | 0.9664 |
84
+ | 0.0798 | 3.0 | 21579 | 0.1632 | 0.8476 | 0.8864 | 0.8665 | 0.9683 |
 
 
85
 
86
 
87
  ### Framework versions