Model save
Browse files- README.md +31 -22
- model.safetensors +1 -1
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -68,28 +68,37 @@ More information needed
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
-
- train_batch_size:
|
72 |
-
- eval_batch_size:
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- lr_scheduler_warmup_ratio: 0.
|
77 |
-
- lr_scheduler_warmup_steps:
|
78 |
- num_epochs: 10
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|
95 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.8296228986824171
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.8812741312741312
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8546688509244091
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9687672026655078
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1851
|
48 |
+
- Precision: 0.8296
|
49 |
+
- Recall: 0.8813
|
50 |
+
- F1: 0.8547
|
51 |
+
- Accuracy: 0.9688
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
+
- lr_scheduler_warmup_ratio: 0.01
|
77 |
+
- lr_scheduler_warmup_steps: 100
|
78 |
- num_epochs: 10
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
+
| 0.607 | 0.56 | 500 | 0.1967 | 0.6391 | 0.7881 | 0.7059 | 0.9475 |
|
85 |
+
| 0.2143 | 1.11 | 1000 | 0.1735 | 0.6993 | 0.8282 | 0.7583 | 0.9591 |
|
86 |
+
| 0.1756 | 1.67 | 1500 | 0.1550 | 0.7363 | 0.8016 | 0.7676 | 0.9605 |
|
87 |
+
| 0.1458 | 2.22 | 2000 | 0.1674 | 0.7549 | 0.8591 | 0.8036 | 0.9624 |
|
88 |
+
| 0.1323 | 2.78 | 2500 | 0.1575 | 0.7802 | 0.8460 | 0.8118 | 0.9619 |
|
89 |
+
| 0.112 | 3.33 | 3000 | 0.1627 | 0.7602 | 0.8369 | 0.7967 | 0.9625 |
|
90 |
+
| 0.1082 | 3.89 | 3500 | 0.1510 | 0.7774 | 0.8697 | 0.8210 | 0.9662 |
|
91 |
+
| 0.0862 | 4.44 | 4000 | 0.1544 | 0.7820 | 0.8552 | 0.8170 | 0.9655 |
|
92 |
+
| 0.0878 | 5.0 | 4500 | 0.1399 | 0.8044 | 0.8692 | 0.8355 | 0.9679 |
|
93 |
+
| 0.0657 | 5.56 | 5000 | 0.1518 | 0.8038 | 0.8639 | 0.8328 | 0.9671 |
|
94 |
+
| 0.0741 | 6.11 | 5500 | 0.1704 | 0.8031 | 0.8562 | 0.8288 | 0.9664 |
|
95 |
+
| 0.0575 | 6.67 | 6000 | 0.1774 | 0.8109 | 0.8649 | 0.8370 | 0.9664 |
|
96 |
+
| 0.0497 | 7.22 | 6500 | 0.1801 | 0.8129 | 0.8682 | 0.8397 | 0.9667 |
|
97 |
+
| 0.0419 | 7.78 | 7000 | 0.1659 | 0.8337 | 0.8687 | 0.8509 | 0.9692 |
|
98 |
+
| 0.0445 | 8.33 | 7500 | 0.1752 | 0.8340 | 0.8755 | 0.8543 | 0.9687 |
|
99 |
+
| 0.037 | 8.89 | 8000 | 0.1823 | 0.8213 | 0.8764 | 0.8480 | 0.9680 |
|
100 |
+
| 0.0324 | 9.44 | 8500 | 0.1854 | 0.8268 | 0.8798 | 0.8525 | 0.9686 |
|
101 |
+
| 0.0313 | 10.0 | 9000 | 0.1851 | 0.8296 | 0.8813 | 0.8547 | 0.9688 |
|
102 |
|
103 |
|
104 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2235481556
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1683fa310eec5d9d4dd1f5c94ceedbeebf41d81a4e478b893f17a4a7b0cafc8f
|
3 |
size 2235481556
|