File size: 2,271 Bytes
139d41e f61fbea 139d41e 035d5ef 139d41e 04c9528 139d41e 04c9528 139d41e 04c9528 139d41e 04c9528 139d41e f61fbea 139d41e 04c9528 139d41e 04c9528 cd41955 139d41e cd41955 139d41e 04c9528 139d41e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC2_0_Supertypes_xlm-roberta-large
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cnec
type: cnec
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.8447596532702916
- name: Recall
type: recall
value: 0.8855844692275919
- name: F1
type: f1
value: 0.8646904617866505
- name: Accuracy
type: accuracy
value: 0.9681587715486021
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CNEC2_0_Supertypes_xlm-roberta-large
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1762
- Precision: 0.8448
- Recall: 0.8856
- F1: 0.8647
- Accuracy: 0.9682
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2106 | 1.0 | 7193 | 0.2086 | 0.7859 | 0.8203 | 0.8027 | 0.9563 |
| 0.1136 | 2.0 | 14386 | 0.1710 | 0.8391 | 0.8678 | 0.8532 | 0.9658 |
| 0.0973 | 3.0 | 21579 | 0.1762 | 0.8448 | 0.8856 | 0.8647 | 0.9682 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|