--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8205234732031574 - name: Recall type: recall value: 0.88604755495738 - name: F1 type: f1 value: 0.8520276100086281 - name: Accuracy type: accuracy value: 0.9624497443303798 --- # CNEC1_1_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1914 - Precision: 0.8205 - Recall: 0.8860 - F1: 0.8520 - Accuracy: 0.9624 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4532 | 0.85 | 500 | 0.2036 | 0.7303 | 0.8295 | 0.7767 | 0.9476 | | 0.2172 | 1.7 | 1000 | 0.1727 | 0.7560 | 0.8591 | 0.8043 | 0.9566 | | 0.1572 | 2.56 | 1500 | 0.1901 | 0.7733 | 0.8690 | 0.8183 | 0.9566 | | 0.1341 | 3.41 | 2000 | 0.1661 | 0.7905 | 0.8753 | 0.8307 | 0.9599 | | 0.1093 | 4.26 | 2500 | 0.1747 | 0.8087 | 0.8856 | 0.8454 | 0.9610 | | 0.0876 | 5.11 | 3000 | 0.1987 | 0.7949 | 0.8798 | 0.8352 | 0.9588 | | 0.0752 | 5.96 | 3500 | 0.1827 | 0.8146 | 0.8834 | 0.8476 | 0.9622 | | 0.0574 | 6.81 | 4000 | 0.1834 | 0.8221 | 0.8937 | 0.8564 | 0.9638 | | 0.0542 | 7.67 | 4500 | 0.1914 | 0.8205 | 0.8860 | 0.8520 | 0.9624 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0