--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8374155405405406 - name: Recall type: recall value: 0.8896366083445492 - name: F1 type: f1 value: 0.8627365673265174 - name: Accuracy type: accuracy value: 0.9609274366680979 --- # CNEC1_1_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2870 - Precision: 0.8374 - Recall: 0.8896 - F1: 0.8627 - Accuracy: 0.9609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4362 | 1.7 | 500 | 0.1915 | 0.7142 | 0.8407 | 0.7723 | 0.9498 | | 0.1873 | 3.4 | 1000 | 0.1735 | 0.7945 | 0.8793 | 0.8348 | 0.9584 | | 0.1395 | 5.1 | 1500 | 0.1774 | 0.7771 | 0.8681 | 0.8201 | 0.9582 | | 0.1031 | 6.8 | 2000 | 0.1837 | 0.8025 | 0.8748 | 0.8371 | 0.9582 | | 0.0825 | 8.5 | 2500 | 0.1937 | 0.8106 | 0.8852 | 0.8462 | 0.9585 | | 0.0671 | 10.2 | 3000 | 0.2007 | 0.8338 | 0.8932 | 0.8625 | 0.9609 | | 0.0538 | 11.9 | 3500 | 0.2101 | 0.8222 | 0.8901 | 0.8548 | 0.9603 | | 0.0419 | 13.61 | 4000 | 0.2177 | 0.8186 | 0.8905 | 0.8530 | 0.9619 | | 0.0361 | 15.31 | 4500 | 0.2299 | 0.8316 | 0.8843 | 0.8571 | 0.9612 | | 0.0281 | 17.01 | 5000 | 0.2474 | 0.8300 | 0.8825 | 0.8554 | 0.9610 | | 0.0234 | 18.71 | 5500 | 0.2623 | 0.8327 | 0.8843 | 0.8577 | 0.9606 | | 0.0194 | 20.41 | 6000 | 0.2702 | 0.8311 | 0.8829 | 0.8562 | 0.9603 | | 0.0169 | 22.11 | 6500 | 0.2781 | 0.8358 | 0.8883 | 0.8612 | 0.9608 | | 0.0151 | 23.81 | 7000 | 0.2870 | 0.8374 | 0.8896 | 0.8627 | 0.9609 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0