--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.831814415907208 - name: Recall type: recall value: 0.887709991158267 - name: F1 type: f1 value: 0.8588537211291701 - name: Accuracy type: accuracy value: 0.9631523478668176 --- # CNEC1_1_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1988 - Precision: 0.8318 - Recall: 0.8877 - F1: 0.8589 - Accuracy: 0.9632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 1000 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.0776 | 0.85 | 500 | 0.3123 | 0.5698 | 0.6799 | 0.6200 | 0.9204 | | 0.3031 | 1.7 | 1000 | 0.2037 | 0.7176 | 0.8143 | 0.7629 | 0.9474 | | 0.2204 | 2.56 | 1500 | 0.1951 | 0.7407 | 0.8400 | 0.7872 | 0.9496 | | 0.18 | 3.41 | 2000 | 0.1868 | 0.7400 | 0.8546 | 0.7932 | 0.9544 | | 0.1501 | 4.26 | 2500 | 0.1725 | 0.7852 | 0.8660 | 0.8236 | 0.9590 | | 0.1209 | 5.11 | 3000 | 0.1842 | 0.8026 | 0.8859 | 0.8422 | 0.9609 | | 0.1061 | 5.96 | 3500 | 0.1814 | 0.7875 | 0.8749 | 0.8289 | 0.9616 | | 0.0833 | 6.81 | 4000 | 0.1893 | 0.8163 | 0.8899 | 0.8515 | 0.9626 | | 0.0771 | 7.67 | 4500 | 0.1847 | 0.8244 | 0.8859 | 0.8540 | 0.9623 | | 0.0603 | 8.52 | 5000 | 0.1875 | 0.8297 | 0.8917 | 0.8596 | 0.9637 | | 0.0569 | 9.37 | 5500 | 0.1988 | 0.8318 | 0.8877 | 0.8589 | 0.9632 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0