--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8266722759781236 - name: Recall type: recall value: 0.8815612382234186 - name: F1 type: f1 value: 0.8532349109856708 - name: Accuracy type: accuracy value: 0.961747140793942 --- # CNEC1_1_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2009 - Precision: 0.8267 - Recall: 0.8816 - F1: 0.8532 - Accuracy: 0.9617 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.8866 | 0.85 | 500 | 0.2420 | 0.6729 | 0.7972 | 0.7298 | 0.9388 | | 0.2429 | 1.7 | 1000 | 0.2028 | 0.7223 | 0.8331 | 0.7738 | 0.9491 | | 0.1689 | 2.56 | 1500 | 0.1860 | 0.7606 | 0.8609 | 0.8077 | 0.9554 | | 0.1427 | 3.41 | 2000 | 0.1791 | 0.7810 | 0.8672 | 0.8219 | 0.9548 | | 0.1109 | 4.26 | 2500 | 0.1829 | 0.7876 | 0.8699 | 0.8267 | 0.9583 | | 0.086 | 5.11 | 3000 | 0.2049 | 0.8042 | 0.8807 | 0.8407 | 0.9590 | | 0.0706 | 5.96 | 3500 | 0.2008 | 0.8142 | 0.8730 | 0.8426 | 0.9600 | | 0.0584 | 6.81 | 4000 | 0.1909 | 0.8253 | 0.8793 | 0.8514 | 0.9617 | | 0.0512 | 7.67 | 4500 | 0.2009 | 0.8267 | 0.8816 | 0.8532 | 0.9617 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0