--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8251895534962089 - name: Recall type: recall value: 0.8788694481830417 - name: F1 type: f1 value: 0.8511840104279819 - name: Accuracy type: accuracy value: 0.9608493696084937 --- # CNEC1_1_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.2044 - Precision: 0.8252 - Recall: 0.8789 - F1: 0.8512 - Accuracy: 0.9608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4123 | 0.85 | 500 | 0.2026 | 0.7055 | 0.8255 | 0.7608 | 0.9474 | | 0.196 | 1.7 | 1000 | 0.1791 | 0.7699 | 0.8573 | 0.8113 | 0.9543 | | 0.145 | 2.56 | 1500 | 0.1962 | 0.7604 | 0.8430 | 0.7996 | 0.9533 | | 0.1184 | 3.41 | 2000 | 0.1812 | 0.7897 | 0.8708 | 0.8282 | 0.9569 | | 0.0959 | 4.26 | 2500 | 0.1788 | 0.7989 | 0.8681 | 0.8321 | 0.9601 | | 0.0707 | 5.11 | 3000 | 0.1868 | 0.8106 | 0.8852 | 0.8462 | 0.9616 | | 0.0561 | 5.96 | 3500 | 0.1988 | 0.8132 | 0.8730 | 0.8421 | 0.9596 | | 0.0404 | 6.81 | 4000 | 0.2027 | 0.8268 | 0.8847 | 0.8548 | 0.9614 | | 0.0383 | 7.67 | 4500 | 0.2044 | 0.8252 | 0.8789 | 0.8512 | 0.9608 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0