--- license: mit base_model: FacebookAI/xlm-roberta-large tags: - generated_from_trainer datasets: - cnec metrics: - precision - recall - f1 - accuracy model-index: - name: CNEC1_1_Supertypes_xlm-roberta-large results: - task: name: Token Classification type: token-classification dataset: name: cnec type: cnec config: default split: validation args: default metrics: - name: Precision type: precision value: 0.8365145228215768 - name: Recall type: recall value: 0.8912466843501327 - name: F1 type: f1 value: 0.863013698630137 - name: Accuracy type: accuracy value: 0.9635817166946407 --- # CNEC1_1_Supertypes_xlm-roberta-large This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset. It achieves the following results on the evaluation set: - Loss: 0.1900 - Precision: 0.8365 - Recall: 0.8912 - F1: 0.8630 - Accuracy: 0.9636 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - lr_scheduler_warmup_steps: 500 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7817 | 0.85 | 500 | 0.2275 | 0.7073 | 0.7918 | 0.7472 | 0.9392 | | 0.2438 | 1.7 | 1000 | 0.1940 | 0.7138 | 0.8324 | 0.7686 | 0.9493 | | 0.1652 | 2.56 | 1500 | 0.1722 | 0.7951 | 0.8678 | 0.8298 | 0.9577 | | 0.1346 | 3.41 | 2000 | 0.1706 | 0.8049 | 0.8811 | 0.8413 | 0.9593 | | 0.107 | 4.26 | 2500 | 0.1750 | 0.7991 | 0.8793 | 0.8373 | 0.9611 | | 0.0851 | 5.11 | 3000 | 0.1976 | 0.7964 | 0.8820 | 0.8370 | 0.9591 | | 0.0711 | 5.96 | 3500 | 0.1763 | 0.8195 | 0.8793 | 0.8484 | 0.9623 | | 0.0528 | 6.81 | 4000 | 0.1883 | 0.8341 | 0.8912 | 0.8617 | 0.9632 | | 0.0475 | 7.67 | 4500 | 0.1900 | 0.8365 | 0.8912 | 0.8630 | 0.9636 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0