stulcrad commited on
Commit
b55d85b
·
verified ·
1 Parent(s): 9f80c8e

Model save

Browse files
README.md ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: FacebookAI/xlm-roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - cnec
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: CNEC1_1_Supertypes_xlm-roberta-large
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: cnec
21
+ type: cnec
22
+ config: default
23
+ split: validation
24
+ args: default
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.8376762067492525
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.879766711529834
32
+ - name: F1
33
+ type: f1
34
+ value: 0.8582056892778994
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9616300402045357
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # CNEC1_1_Supertypes_xlm-roberta-large
44
+
45
+ This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.2548
48
+ - Precision: 0.8377
49
+ - Recall: 0.8798
50
+ - F1: 0.8582
51
+ - Accuracy: 0.9616
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.3769 | 0.85 | 500 | 0.2160 | 0.7075 | 0.8008 | 0.7513 | 0.9428 |
83
+ | 0.1806 | 1.7 | 1000 | 0.1810 | 0.7730 | 0.8466 | 0.8081 | 0.9527 |
84
+ | 0.1218 | 2.56 | 1500 | 0.1958 | 0.7917 | 0.8425 | 0.8163 | 0.9546 |
85
+ | 0.1027 | 3.41 | 2000 | 0.1970 | 0.7919 | 0.8654 | 0.8270 | 0.9557 |
86
+ | 0.0819 | 4.26 | 2500 | 0.1964 | 0.7840 | 0.8546 | 0.8178 | 0.9591 |
87
+ | 0.0594 | 5.11 | 3000 | 0.2186 | 0.8002 | 0.8645 | 0.8311 | 0.9576 |
88
+ | 0.0435 | 5.96 | 3500 | 0.2055 | 0.8171 | 0.8677 | 0.8416 | 0.9597 |
89
+ | 0.0303 | 6.81 | 4000 | 0.2243 | 0.8222 | 0.8816 | 0.8508 | 0.9608 |
90
+ | 0.0259 | 7.67 | 4500 | 0.2335 | 0.8311 | 0.8784 | 0.8541 | 0.9607 |
91
+ | 0.0152 | 8.52 | 5000 | 0.2526 | 0.8315 | 0.8721 | 0.8513 | 0.9603 |
92
+ | 0.0135 | 9.37 | 5500 | 0.2548 | 0.8377 | 0.8798 | 0.8582 | 0.9616 |
93
+
94
+
95
+ ### Framework versions
96
+
97
+ - Transformers 4.36.2
98
+ - Pytorch 2.1.2+cu121
99
+ - Datasets 2.16.1
100
+ - Tokenizers 0.15.0
runs/Mar05_14-13-34_g10/events.out.tfevents.1709644416.g10.2818507.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f956dc4ef47e75241a97f0935fc1dd86207f629842a106f84ad3628f2d46eae0
3
- size 12024
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1359a8e2acfd82dda0923607be6ade252b18b7bffca97b1371e6ff0fc57d9eb9
3
+ size 12378