Model save
Browse files
README.md
CHANGED
@@ -25,16 +25,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -68,30 +68,30 @@ More information needed
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
-
- train_batch_size:
|
72 |
-
- eval_batch_size:
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
- lr_scheduler_warmup_ratio: 0.1
|
77 |
-
- lr_scheduler_warmup_steps:
|
78 |
-
- num_epochs:
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
-
| 1.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
|
96 |
|
97 |
### Framework versions
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.7681443703413103
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.865605658709107
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.8139679900228644
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.959834497833639
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.1868
|
48 |
+
- Precision: 0.7681
|
49 |
+
- Recall: 0.8656
|
50 |
+
- F1: 0.8140
|
51 |
+
- Accuracy: 0.9598
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 4
|
72 |
+
- eval_batch_size: 4
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
- lr_scheduler_warmup_ratio: 0.1
|
77 |
+
- lr_scheduler_warmup_steps: 500
|
78 |
+
- num_epochs: 5
|
79 |
|
80 |
### Training results
|
81 |
|
82 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
83 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
84 |
+
| 1.0063 | 0.43 | 500 | 0.2980 | 0.6364 | 0.7476 | 0.6875 | 0.9276 |
|
85 |
+
| 0.347 | 0.85 | 1000 | 0.2429 | 0.6877 | 0.8108 | 0.7442 | 0.9445 |
|
86 |
+
| 0.2611 | 1.28 | 1500 | 0.2480 | 0.6955 | 0.8280 | 0.7560 | 0.9466 |
|
87 |
+
| 0.2294 | 1.7 | 2000 | 0.2350 | 0.7126 | 0.8342 | 0.7686 | 0.9496 |
|
88 |
+
| 0.2058 | 2.13 | 2500 | 0.2064 | 0.6924 | 0.8139 | 0.7482 | 0.9507 |
|
89 |
+
| 0.1843 | 2.56 | 3000 | 0.1968 | 0.7509 | 0.8568 | 0.8003 | 0.9542 |
|
90 |
+
| 0.1693 | 2.98 | 3500 | 0.1890 | 0.7538 | 0.8364 | 0.7930 | 0.9573 |
|
91 |
+
| 0.1408 | 3.41 | 4000 | 0.2034 | 0.7270 | 0.8333 | 0.7765 | 0.9542 |
|
92 |
+
| 0.1441 | 3.83 | 4500 | 0.2004 | 0.7398 | 0.8599 | 0.7953 | 0.9569 |
|
93 |
+
| 0.1164 | 4.26 | 5000 | 0.1974 | 0.7588 | 0.8652 | 0.8085 | 0.9586 |
|
94 |
+
| 0.1131 | 4.68 | 5500 | 0.1868 | 0.7681 | 0.8656 | 0.8140 | 0.9598 |
|
95 |
|
96 |
|
97 |
### Framework versions
|
runs/Mar07_18-16-05_g05/events.out.tfevents.1709831765.g05.3355634.2
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38d16bc2036ac0c1c824689932ebc95a0f681730ac48eaf8b0dd060dcd0283d1
|
3 |
+
size 12384
|