stulcrad commited on
Commit
1ebb157
·
verified ·
1 Parent(s): 72db078

Model save

Browse files
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8365145228215768
29
  - name: Recall
30
  type: recall
31
- value: 0.8912466843501327
32
  - name: F1
33
  type: f1
34
- value: 0.863013698630137
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9635817166946407
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1900
48
- - Precision: 0.8365
49
- - Recall: 0.8912
50
- - F1: 0.8630
51
- - Accuracy: 0.9636
52
 
53
  ## Model description
54
 
@@ -74,22 +74,24 @@ The following hyperparameters were used during training:
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - lr_scheduler_warmup_ratio: 0.1
77
- - lr_scheduler_warmup_steps: 500
78
- - num_epochs: 8
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
- | 0.7817 | 0.85 | 500 | 0.2275 | 0.7073 | 0.7918 | 0.7472 | 0.9392 |
85
- | 0.2438 | 1.7 | 1000 | 0.1940 | 0.7138 | 0.8324 | 0.7686 | 0.9493 |
86
- | 0.1652 | 2.56 | 1500 | 0.1722 | 0.7951 | 0.8678 | 0.8298 | 0.9577 |
87
- | 0.1346 | 3.41 | 2000 | 0.1706 | 0.8049 | 0.8811 | 0.8413 | 0.9593 |
88
- | 0.107 | 4.26 | 2500 | 0.1750 | 0.7991 | 0.8793 | 0.8373 | 0.9611 |
89
- | 0.0851 | 5.11 | 3000 | 0.1976 | 0.7964 | 0.8820 | 0.8370 | 0.9591 |
90
- | 0.0711 | 5.96 | 3500 | 0.1763 | 0.8195 | 0.8793 | 0.8484 | 0.9623 |
91
- | 0.0528 | 6.81 | 4000 | 0.1883 | 0.8341 | 0.8912 | 0.8617 | 0.9632 |
92
- | 0.0475 | 7.67 | 4500 | 0.1900 | 0.8365 | 0.8912 | 0.8630 | 0.9636 |
 
 
93
 
94
 
95
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.831814415907208
29
  - name: Recall
30
  type: recall
31
+ value: 0.887709991158267
32
  - name: F1
33
  type: f1
34
+ value: 0.8588537211291701
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9631523478668176
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the cnec dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.1988
48
+ - Precision: 0.8318
49
+ - Recall: 0.8877
50
+ - F1: 0.8589
51
+ - Accuracy: 0.9632
52
 
53
  ## Model description
54
 
 
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
76
  - lr_scheduler_warmup_ratio: 0.1
77
+ - lr_scheduler_warmup_steps: 1000
78
+ - num_epochs: 10
79
 
80
  ### Training results
81
 
82
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
83
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
84
+ | 1.0776 | 0.85 | 500 | 0.3123 | 0.5698 | 0.6799 | 0.6200 | 0.9204 |
85
+ | 0.3031 | 1.7 | 1000 | 0.2037 | 0.7176 | 0.8143 | 0.7629 | 0.9474 |
86
+ | 0.2204 | 2.56 | 1500 | 0.1951 | 0.7407 | 0.8400 | 0.7872 | 0.9496 |
87
+ | 0.18 | 3.41 | 2000 | 0.1868 | 0.7400 | 0.8546 | 0.7932 | 0.9544 |
88
+ | 0.1501 | 4.26 | 2500 | 0.1725 | 0.7852 | 0.8660 | 0.8236 | 0.9590 |
89
+ | 0.1209 | 5.11 | 3000 | 0.1842 | 0.8026 | 0.8859 | 0.8422 | 0.9609 |
90
+ | 0.1061 | 5.96 | 3500 | 0.1814 | 0.7875 | 0.8749 | 0.8289 | 0.9616 |
91
+ | 0.0833 | 6.81 | 4000 | 0.1893 | 0.8163 | 0.8899 | 0.8515 | 0.9626 |
92
+ | 0.0771 | 7.67 | 4500 | 0.1847 | 0.8244 | 0.8859 | 0.8540 | 0.9623 |
93
+ | 0.0603 | 8.52 | 5000 | 0.1875 | 0.8297 | 0.8917 | 0.8596 | 0.9637 |
94
+ | 0.0569 | 9.37 | 5500 | 0.1988 | 0.8318 | 0.8877 | 0.8589 | 0.9632 |
95
 
96
 
97
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:149cccbb803ec1421ba82872d1fa77a1c601afb33067be0de43099a0163bc763
3
  size 2235497956
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c06a685acef169a45f28f407c65c2218e9ab16c64248c2970c1760cb3984c6d3
3
  size 2235497956
runs/Mar07_17-19-37_g05/events.out.tfevents.1709828378.g05.3355634.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d0f9a740618bd632260a8a865d4e3ba46adb39168460a02325f919c86256b820
3
- size 12032
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca517aa9101b38332742d5e9cf059244d433a337b5318caca14715709df39bff
3
+ size 12386