Upload LinearRegression_Model.py
Browse files- LinearRegression_Model.py +87 -0
LinearRegression_Model.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import jittor as jt
|
2 |
+
#骨干网络模块
|
3 |
+
from jittor import Module
|
4 |
+
#神经网络模块
|
5 |
+
from jittor import nn
|
6 |
+
import numpy as np
|
7 |
+
import matplotlib
|
8 |
+
matplotlib.use('TkAgg')
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
#线性回归实例
|
12 |
+
|
13 |
+
#该模型是一个两层神经网络。 隐藏层的大小为10,激活函数为relu
|
14 |
+
class Model(Module):
|
15 |
+
def __init__(self):
|
16 |
+
self.layer1 = nn.Linear(1, 10)
|
17 |
+
self.relu = nn.Relu()
|
18 |
+
self.layer2 = nn.Linear(10, 1)
|
19 |
+
def execute (self,x) :
|
20 |
+
x = self.layer1(x)
|
21 |
+
x = self.relu(x)
|
22 |
+
x = self.layer2(x)
|
23 |
+
return x
|
24 |
+
|
25 |
+
def get_data(n): # generate random data for training test.
|
26 |
+
for i in range(n):#n=1000
|
27 |
+
#产生一个numpy.ndarray数据类型的列表
|
28 |
+
#其中包含batch_size(50)个numpy.ndarray数据类型的列表x
|
29 |
+
#每个小列表里只有一个(0,1)的数,数据类型是'numpy.float64,x[index]
|
30 |
+
#y跟x一样
|
31 |
+
x = np.random.rand(batch_size, 1)
|
32 |
+
y = x*x
|
33 |
+
#返回一个generator实例
|
34 |
+
yield jt.float32(x), jt.float32(y)
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
#随机数种子对后面的结果一直有影响,后面的随机数组都是按一定的顺序生成的
|
39 |
+
np.random.seed(0)
|
40 |
+
jt.set_seed(3)
|
41 |
+
n = 1000
|
42 |
+
batch_size = 50
|
43 |
+
|
44 |
+
#新建模型
|
45 |
+
model = Model()
|
46 |
+
#设置学习效率
|
47 |
+
learning_rate = 0.1
|
48 |
+
#保持当前参数状态并基于计算得到的梯度进行参数更新
|
49 |
+
optim = nn.SGD(model.parameters(), learning_rate)
|
50 |
+
min_loss = 1.0
|
51 |
+
|
52 |
+
#开启一个画图的窗口进入交互模式,实时更新数据
|
53 |
+
plt.ion()
|
54 |
+
|
55 |
+
#优化器使用简单的梯度下降,损失函数为L2距离
|
56 |
+
#enumerate:将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标
|
57 |
+
#列表中的每个元素都是元组(x,y)
|
58 |
+
for i,(x,y) in enumerate(get_data(n)):
|
59 |
+
pred_y = model(x)
|
60 |
+
loss = ((pred_y - y)**2)
|
61 |
+
loss_mean = loss.mean()
|
62 |
+
optim.step (loss_mean)
|
63 |
+
#print(f"step {i}, loss = {loss_mean.data.sum()}")
|
64 |
+
#根据每次的loss来选择是否绘图,保证最后一张图的loss最小
|
65 |
+
if(loss_mean.data[0]<min_loss):
|
66 |
+
min_loss=loss_mean.data[0]
|
67 |
+
#清除刷新前的图
|
68 |
+
plt.clf()
|
69 |
+
plt.suptitle(str(i)+"time loss:"+str(loss_mean.data),fontsize=10)
|
70 |
+
#第一张图
|
71 |
+
a_graph = plt.subplot(2,1,1)
|
72 |
+
a_graph.set_title('Raw data(x,y)')
|
73 |
+
a_graph.set_xlabel('x',fontsize=10)
|
74 |
+
a_graph.set_ylabel('y',fontsize=10)
|
75 |
+
plt.plot(x.data,y.data,'r^')
|
76 |
+
#第二张图
|
77 |
+
b_graph=plt.subplot(2,1,2)
|
78 |
+
b_graph.set_title("Fitted data(x,pred_y)")
|
79 |
+
b_graph.set_xlabel('x',fontsize=10)
|
80 |
+
b_graph.set_ylabel('pred_y',fontsize=10)
|
81 |
+
plt.plot(x.data,pred_y.data,'g-')
|
82 |
+
#弹窗停留0.4秒
|
83 |
+
plt.pause(0.4)
|
84 |
+
|
85 |
+
#关闭交互模式
|
86 |
+
plt.ioff()
|
87 |
+
plt.show()
|