Upload lsgan_celebA.py
Browse files- lsgan_celebA.py +261 -0
lsgan_celebA.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from jittor.dataset.mnist import MNIST
|
2 |
+
import jittor.transform as transform
|
3 |
+
from jittor.dataset.dataset import ImageFolder
|
4 |
+
import jittor as jt
|
5 |
+
from jittor import nn, Module
|
6 |
+
import os
|
7 |
+
import argparse
|
8 |
+
from time import *
|
9 |
+
import PIL.Image as Image
|
10 |
+
import numpy as np
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
plt.switch_backend('agg')
|
13 |
+
|
14 |
+
jt.flags.use_cuda = 1
|
15 |
+
|
16 |
+
# 参数设定
|
17 |
+
parser = argparse.ArgumentParser()
|
18 |
+
parser.add_argument('--task', type=str, default='celebA', help='训练数据集类型')
|
19 |
+
parser.add_argument('--train_dir', type=str, default='D:\\Image_Generation_Learn\\Dataset\\CelebA_train', help='训练数据集地址')
|
20 |
+
parser.add_argument('--eval_dir', type=str, default='D:\\Image_Generation_Learn\\Dataset\\CelebA_train', help='训练数据集地址')
|
21 |
+
parser.add_argument('--n_epochs', type=int, default=100, help='训练的时期数')
|
22 |
+
parser.add_argument('--batch_size', type=int, default=64, help='批次大小')
|
23 |
+
parser.add_argument('--lr', type=float, default=0.0002, help='学习率')
|
24 |
+
parser.add_argument('--b1', type=float, default=0.5, help='梯度的一阶动量衰减')
|
25 |
+
parser.add_argument('--b2', type=float, default=0.999, help='梯度的一阶动量衰减')
|
26 |
+
parser.add_argument('--img_size', type=int, default=112, help='每个图像尺寸的大小')
|
27 |
+
parser.add_argument('--celebA_channels', type=int, default=3, help='图像通道数')
|
28 |
+
parser.add_argument('--mnist_channels', type=int, default=1, help='图像通道数')
|
29 |
+
parser.add_argument('--img_row', type=int, default=5, help='图像样本之间的间隔')
|
30 |
+
parser.add_argument('--img_column', type=int, default=5, help='图像样本之间的间隔')
|
31 |
+
'''
|
32 |
+
parser.add_argument('--n_cpu', type=int, default=8, help='批处理生成期间要使用的 cpu 线程数')
|
33 |
+
parser.add_argument('--latent_dim', type=int, default=100, help='潜在空间的维度')
|
34 |
+
parser.add_argument('--sample_interval', type=int, default=400, help='图像样本之间的间隔')
|
35 |
+
'''
|
36 |
+
opt = parser.parse_args()
|
37 |
+
print(opt)
|
38 |
+
|
39 |
+
# 训练集加载程序
|
40 |
+
def DataLoader(dataclass, img_size, batch_size, train_dir, eval_dir):
|
41 |
+
if dataclass == 'MNIST':
|
42 |
+
Transform = transform.Compose([
|
43 |
+
transform.Resize(size=img_size),
|
44 |
+
transform.Gray(),
|
45 |
+
transform.ImageNormalize(mean=[0.5], std=[0.5])])
|
46 |
+
train_loader = MNIST (data_root=train_dir, train=True, transform=Transform).set_attrs(batch_size=batch_size, shuffle=True)
|
47 |
+
eval_loader = MNIST (data_root=eval_dir, train=False, transform = Transform).set_attrs(batch_size=1, shuffle=True)
|
48 |
+
elif dataclass == 'celebA':
|
49 |
+
Transform = transform.Compose([
|
50 |
+
transform.Resize(size=img_size),
|
51 |
+
transform.ImageNormalize(mean=[0.5, 0.5, 0.5],std=[0.5, 0.5, 0.5])])
|
52 |
+
train_loader = ImageFolder(train_dir)\
|
53 |
+
.set_attrs(transform=Transform, batch_size=batch_size, shuffle=True)
|
54 |
+
eval_loader = ImageFolder(eval_dir)\
|
55 |
+
.set_attrs(transform=Transform, batch_size=batch_size, shuffle=True)
|
56 |
+
else:
|
57 |
+
print("没有加载%s数据集的程序,请选择MNIST或者celebA!" % dataclass)
|
58 |
+
dataclass = input("请输入:MNIST或者celebA:")
|
59 |
+
DataLoader(dataclass, img_size, batch_size,train_dir, eval_dir)
|
60 |
+
|
61 |
+
return train_loader, eval_loader
|
62 |
+
|
63 |
+
# 加载训练集数据
|
64 |
+
train_loader, eval_loader = DataLoader(dataclass=opt.task,img_size=opt.img_size,batch_size=opt.batch_size,train_dir=opt.train_dir,eval_dir=opt.eval_dir)
|
65 |
+
|
66 |
+
# 生成器
|
67 |
+
class generator(Module):
|
68 |
+
def __init__(self, dim=3):
|
69 |
+
super(generator, self).__init__()
|
70 |
+
self.fc = nn.Linear(1024, 7*7*256)
|
71 |
+
self.fc_bn = nn.BatchNorm(256)
|
72 |
+
self.deconv1 = nn.ConvTranspose(256, 256, 3, 2, 1, 1)
|
73 |
+
self.deconv1_bn = nn.BatchNorm(256)
|
74 |
+
self.deconv2 = nn.ConvTranspose(256, 256, 3, 1, 1)
|
75 |
+
self.deconv2_bn = nn.BatchNorm(256)
|
76 |
+
self.deconv3 = nn.ConvTranspose(256, 256, 3, 2, 1, 1)
|
77 |
+
self.deconv3_bn = nn.BatchNorm(256)
|
78 |
+
self.deconv4 = nn.ConvTranspose(256, 256, 3, 1, 1)
|
79 |
+
self.deconv4_bn = nn.BatchNorm(256)
|
80 |
+
self.deconv5 = nn.ConvTranspose(256, 128, 3, 2, 1, 1)
|
81 |
+
self.deconv5_bn = nn.BatchNorm(128)
|
82 |
+
self.deconv6 = nn.ConvTranspose(128, 64, 3, 2, 1, 1)
|
83 |
+
self.deconv6_bn = nn.BatchNorm(64)
|
84 |
+
self.deconv7 = nn.ConvTranspose(64 , dim, 3, 1, 1)
|
85 |
+
self.relu = nn.ReLU()
|
86 |
+
self.tanh = nn.Tanh()
|
87 |
+
|
88 |
+
def execute(self, input):
|
89 |
+
x = self.fc(input).reshape((-1, 256, 7, 7))
|
90 |
+
x = self.relu(self.fc_bn(x))
|
91 |
+
x = self.relu(self.deconv1_bn(self.deconv1(x)))
|
92 |
+
x = self.relu(self.deconv2_bn(self.deconv2(x)))
|
93 |
+
x = self.relu(self.deconv3_bn(self.deconv3(x)))
|
94 |
+
x = self.relu(self.deconv4_bn(self.deconv4(x)))
|
95 |
+
x = self.relu(self.deconv5_bn(self.deconv5(x)))
|
96 |
+
x = self.relu(self.deconv6_bn(self.deconv6(x)))
|
97 |
+
x = self.tanh(self.deconv7(x))
|
98 |
+
return x
|
99 |
+
|
100 |
+
# 判别器
|
101 |
+
class discriminator(nn.Module):
|
102 |
+
def __init__(self, dim=3):
|
103 |
+
super(discriminator, self).__init__()
|
104 |
+
self.conv1 = nn.Conv(dim, 64, 5, 2, 2)
|
105 |
+
self.conv2 = nn.Conv(64, 128, 5, 2, 2)
|
106 |
+
self.conv2_bn = nn.BatchNorm(128)
|
107 |
+
self.conv3 = nn.Conv(128, 256, 5, 2, 2)
|
108 |
+
self.conv3_bn = nn.BatchNorm(256)
|
109 |
+
self.conv4 = nn.Conv(256, 512, 5, 2, 2)
|
110 |
+
self.conv4_bn = nn.BatchNorm(512)
|
111 |
+
self.fc = nn.Linear(512*7*7, 1)
|
112 |
+
self.leaky_relu = nn.Leaky_relu()
|
113 |
+
|
114 |
+
def execute(self, input):
|
115 |
+
x = self.leaky_relu(self.conv1(input), 0.2)
|
116 |
+
x = self.leaky_relu(self.conv2_bn(self.conv2(x)), 0.2)
|
117 |
+
x = self.leaky_relu(self.conv3_bn(self.conv3(x)), 0.2)
|
118 |
+
x = self.leaky_relu(self.conv4_bn(self.conv4(x)), 0.2)
|
119 |
+
x = x.reshape((x.shape[0], 512*7*7))
|
120 |
+
x = self.fc(x)
|
121 |
+
return x
|
122 |
+
|
123 |
+
# 损失函数
|
124 |
+
def ls_loss(x, b):
|
125 |
+
mini_batch = x.shape[0]
|
126 |
+
y_real_ = jt.ones((mini_batch,))
|
127 |
+
y_fake_ = jt.zeros((mini_batch,))
|
128 |
+
if b:
|
129 |
+
return (x-y_real_).sqr().mean()
|
130 |
+
else:
|
131 |
+
return (x-y_fake_).sqr().mean()
|
132 |
+
|
133 |
+
# 定义图像拼接函数
|
134 |
+
def image_compose(array,IMAGE_SIZE=128,IMAGE_SAVE_PATH='./images_celebA'):
|
135 |
+
to_image = Image.new('RGB', (opt.img_column * IMAGE_SIZE, opt.img_row * IMAGE_SIZE)) # 创建一个新图
|
136 |
+
randomList = np.random.randint(0,array.shape[0],25)
|
137 |
+
img_list = list()
|
138 |
+
for i in randomList:
|
139 |
+
# print(type(array[i]))
|
140 |
+
img = Image.fromarray(np.uint8(array[i].transpose((1,2,0))*255))
|
141 |
+
img_list.append(img)
|
142 |
+
|
143 |
+
# 循环遍历,把每张图片按顺序粘贴到对应位置上
|
144 |
+
for y in range(1, opt.img_row + 1):
|
145 |
+
for x in range(1, opt.img_column + 1):
|
146 |
+
from_image = img_list.pop().resize((IMAGE_SIZE, IMAGE_SIZE), Image.ANTIALIAS)
|
147 |
+
to_image.paste(from_image, ((x - 1) * IMAGE_SIZE, (y - 1) * IMAGE_SIZE))
|
148 |
+
return to_image.save(IMAGE_SAVE_PATH) # 保存新图
|
149 |
+
|
150 |
+
def save_img_result(num_epoch, G, path = './images_celebA/result.png'):
|
151 |
+
fixed_z_ = jt.init.gauss((5 * 5, 1024), 'float') # fixed noise
|
152 |
+
z_ = fixed_z_
|
153 |
+
G.eval()
|
154 |
+
test_images = G(z_)
|
155 |
+
G.train()
|
156 |
+
size_figure_grid = 5
|
157 |
+
fig, ax = plt.subplots(size_figure_grid, size_figure_grid, figsize=(5, 5))
|
158 |
+
for i in range(size_figure_grid):
|
159 |
+
for j in range(size_figure_grid):
|
160 |
+
ax[i, j].get_xaxis().set_visible(False)
|
161 |
+
ax[i, j].get_yaxis().set_visible(False)
|
162 |
+
|
163 |
+
for k in range(5*5):
|
164 |
+
i = k // 5
|
165 |
+
j = k % 5
|
166 |
+
ax[i, j].cla()
|
167 |
+
if opt.task=="MNIST":
|
168 |
+
ax[i, j].imshow((test_images[k, 0].data+1)/2, cmap='gray')
|
169 |
+
else:
|
170 |
+
ax[i, j].imshow((test_images[k].data.transpose(1, 2, 0)+1)/2)
|
171 |
+
|
172 |
+
label = 'Epoch {0}'.format(num_epoch)
|
173 |
+
fig.text(0.5, 0.04, label, ha='center')
|
174 |
+
plt.savefig(path)
|
175 |
+
plt.close()
|
176 |
+
|
177 |
+
def train(epoch):
|
178 |
+
for batch_idx, (x_, target) in enumerate(train_loader):
|
179 |
+
mini_batch = x_.shape[0]
|
180 |
+
|
181 |
+
# 判别器训练 将假图片尽可能的判别为0
|
182 |
+
D_result = D(x_) #输入[128,3,112,112,] 生成[128,1] 128位batch_size
|
183 |
+
D_real_loss = ls_loss(D_result, True) #真实图片的损失
|
184 |
+
z_ = jt.init.gauss((mini_batch, 1024), 'float') #生成随机噪声,大小为[128,1024]
|
185 |
+
G_result = G(z_) #输入噪声,生成[128,3,112,112,]
|
186 |
+
D_result_ = D(G_result) #输入由噪声生成的图像,得到判别器的预测值
|
187 |
+
D_fake_loss = ls_loss(D_result_, False) #假图片的损失
|
188 |
+
D_train_loss = D_real_loss + D_fake_loss
|
189 |
+
D_train_loss.sync()
|
190 |
+
D_optim.step(D_train_loss)
|
191 |
+
|
192 |
+
# 生成器训练 让生成器尽可能的生成真实的照片
|
193 |
+
z_ = jt.init.gauss((mini_batch, 1024), 'float') #生成噪声
|
194 |
+
G_result = G(z_) #由噪声生成假图片
|
195 |
+
D_result = D(G_result) #将假图片输入到判别器,得到预测值
|
196 |
+
G_train_loss = ls_loss(D_result, True) #将假图片的预测值与1做损失,目的是未来让生成器尽可能的生成真实的照片
|
197 |
+
G_train_loss.sync()
|
198 |
+
G_optim.step(G_train_loss)
|
199 |
+
if (batch_idx%100==0 ):
|
200 |
+
print("train: epoch{} batch_idx{} D training loss = {} G training loss = {} ".format(epoch,batch_idx,D_train_loss.data.mean(),G_train_loss.data.mean()))
|
201 |
+
# if((epoch)%5==0 or epoch==0 and batch_idx==100):
|
202 |
+
# image_compose(G_result.data,128,"./imgs/epoch{}-G_{}.jpg".format(epoch,task))
|
203 |
+
|
204 |
+
def validate(epoch):
|
205 |
+
D_losses = []
|
206 |
+
G_losses = []
|
207 |
+
G.eval()
|
208 |
+
D.eval()
|
209 |
+
for batch_idx, (x_, target) in enumerate(eval_loader):
|
210 |
+
mini_batch = x_.shape[0]
|
211 |
+
|
212 |
+
# 判别器损失计算
|
213 |
+
D_result = D(x_)
|
214 |
+
D_real_loss = ls_loss(D_result, True)
|
215 |
+
z_ = jt.init.gauss((mini_batch, 1024), 'float')
|
216 |
+
G_result = G(z_)
|
217 |
+
D_result_ = D(G_result)
|
218 |
+
D_fake_loss = ls_loss(D_result_, False)
|
219 |
+
D_train_loss = D_real_loss + D_fake_loss
|
220 |
+
D_losses.append(D_train_loss.data.mean())
|
221 |
+
|
222 |
+
# 生成器损失计算
|
223 |
+
z_ = jt.init.gauss((mini_batch, 1024), 'float')
|
224 |
+
G_result = G(z_)
|
225 |
+
D_result = D(G_result)
|
226 |
+
G_train_loss = ls_loss(D_result, True)
|
227 |
+
G_losses.append(G_train_loss.data.mean())
|
228 |
+
G.train()
|
229 |
+
D.train()
|
230 |
+
print("validate: epoch{}\tbatch_idx{}\tD training loss = {}\tG training loss = {}"
|
231 |
+
.format(epoch, batch_idx, str(np.array(D_losses).mean()), str(np.array(G_losses).mean())))
|
232 |
+
|
233 |
+
|
234 |
+
# 初始化生成器和判别器 (通道数)
|
235 |
+
G = generator(opt.celebA_channels)
|
236 |
+
D = discriminator(opt.celebA_channels)
|
237 |
+
|
238 |
+
# 优化器 0.0002 (0.5, 0.999)
|
239 |
+
G_optim = jt.nn.Adam(G.parameters(), opt.lr, betas=(opt.b1, opt.b2))
|
240 |
+
D_optim = jt.nn.Adam(D.parameters(), opt.lr, betas=(opt.b1, opt.b2))
|
241 |
+
|
242 |
+
# 结果存储地址
|
243 |
+
save_img_path = './images_celebA'
|
244 |
+
save_model_path = './save_model_celebA'
|
245 |
+
os.makedirs(save_img_path, exist_ok=True)
|
246 |
+
os.makedirs(save_model_path, exist_ok=True)
|
247 |
+
|
248 |
+
G.load_parameters(jt.load(save_model_path+'/generator_celebA.pkl'))
|
249 |
+
D.load_parameters(jt.load(save_model_path+'/discriminator_celebA.pkl'))
|
250 |
+
|
251 |
+
for epoch in range(37,opt.n_epochs):
|
252 |
+
print ('number of epochs', epoch)
|
253 |
+
train(epoch)
|
254 |
+
#validate(epoch)
|
255 |
+
result_img_path = save_img_path + '/' + str(epoch) + '.png'
|
256 |
+
save_img_result(epoch, G, path=result_img_path)
|
257 |
+
|
258 |
+
# 指定地址保存训练好的模型
|
259 |
+
if (epoch+1) % 10 == 0:
|
260 |
+
G.save(save_model_path+"/generator_celebA.pkl")
|
261 |
+
D.save(save_model_path+"/discriminator_celebA.pkl")
|