--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model-index: - name: isafpr-tiny-llama-lora results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false data_seed: 42 seed: 42 datasets: - path: data/isaf_press_releases_ft.jsonl conversation: alpaca type: sharegpt dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/tiny-llama/lora-out hub_model_id: strickvl/isafpr-tiny-llama-lora sequence_len: 4096 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: isaf_pr_ft wandb_entity: strickvl wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# isafpr-tiny-llama-lora This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7724 | 0.0303 | 1 | 1.7779 | | 1.2158 | 0.2727 | 9 | 1.0692 | | 0.2116 | 0.5455 | 18 | 0.1796 | | 0.1051 | 0.8182 | 27 | 0.1048 | | 0.0762 | 1.0227 | 36 | 0.0859 | | 0.0704 | 1.2955 | 45 | 0.0763 | | 0.0661 | 1.5682 | 54 | 0.0692 | | 0.073 | 1.8409 | 63 | 0.0646 | | 0.0625 | 2.0455 | 72 | 0.0621 | | 0.0522 | 2.3182 | 81 | 0.0602 | | 0.0472 | 2.5909 | 90 | 0.0580 | | 0.0545 | 2.8636 | 99 | 0.0571 | | 0.0467 | 3.0682 | 108 | 0.0561 | | 0.057 | 3.3409 | 117 | 0.0557 | | 0.0477 | 3.6136 | 126 | 0.0557 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1