Commit
·
12ba2dd
0
Parent(s):
Initial commit: Add DISK model implementation with fixed imports
Browse files- .gitignore +21 -0
- disk_model/__init__.py +0 -0
- disk_model/configuration_disk.py +30 -0
- disk_model/modeling_disk.py +76 -0
.gitignore
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__pycache__/
|
| 2 |
+
*.py[cod]
|
| 3 |
+
*$py.class
|
| 4 |
+
*.so
|
| 5 |
+
.Python
|
| 6 |
+
build/
|
| 7 |
+
develop-eggs/
|
| 8 |
+
dist/
|
| 9 |
+
downloads/
|
| 10 |
+
eggs/
|
| 11 |
+
.eggs/
|
| 12 |
+
lib/
|
| 13 |
+
lib64/
|
| 14 |
+
parts/
|
| 15 |
+
sdist/
|
| 16 |
+
var/
|
| 17 |
+
wheels/
|
| 18 |
+
*.egg-info/
|
| 19 |
+
.installed.cfg
|
| 20 |
+
*.egg
|
| 21 |
+
MANIFEST
|
disk_model/__init__.py
ADDED
|
File without changes
|
disk_model/configuration_disk.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class DiskConfig(PretrainedConfig):
|
| 7 |
+
model_type = "disk"
|
| 8 |
+
|
| 9 |
+
def __init__(
|
| 10 |
+
self,
|
| 11 |
+
weights: str = "depth",
|
| 12 |
+
max_num_keypoints: Optional[int] = None,
|
| 13 |
+
descriptor_decoder_dim: int = 128,
|
| 14 |
+
nms_window_size: int = 5,
|
| 15 |
+
detection_threshold: float = 0.0,
|
| 16 |
+
pad_if_not_divisible: bool = True,
|
| 17 |
+
**kwargs,
|
| 18 |
+
):
|
| 19 |
+
super().__init__(**kwargs)
|
| 20 |
+
self.weights = weights
|
| 21 |
+
self.max_num_keypoints = max_num_keypoints
|
| 22 |
+
self.descriptor_decoder_dim = descriptor_decoder_dim
|
| 23 |
+
self.nms_window_size = nms_window_size
|
| 24 |
+
self.detection_threshold = detection_threshold
|
| 25 |
+
self.pad_if_not_divisible = pad_if_not_divisible
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
config = DiskConfig()
|
| 30 |
+
config.save_pretrained("stevenbucaille/disk", push_to_hub=True)
|
disk_model/modeling_disk.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import kornia
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from configuration_disk import DiskConfig
|
| 5 |
+
from transformers import AutoConfig, AutoModelForKeypointDetection, PreTrainedModel
|
| 6 |
+
from transformers.models.superpoint.modeling_superpoint import (
|
| 7 |
+
SuperPointKeypointDescriptionOutput,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class DiskForKeypointDetection(PreTrainedModel):
|
| 12 |
+
config_class = DiskConfig
|
| 13 |
+
|
| 14 |
+
def __init__(self, config: DiskConfig):
|
| 15 |
+
super().__init__(config)
|
| 16 |
+
|
| 17 |
+
self.config = config
|
| 18 |
+
self.model = kornia.feature.DISK.from_pretrained(self.config.weights)
|
| 19 |
+
|
| 20 |
+
def forward(
|
| 21 |
+
self, pixel_values: torch.Tensor
|
| 22 |
+
) -> SuperPointKeypointDescriptionOutput:
|
| 23 |
+
detections = self.model(
|
| 24 |
+
pixel_values,
|
| 25 |
+
n=self.config.max_num_keypoints,
|
| 26 |
+
window_size=self.config.nms_window_size,
|
| 27 |
+
score_threshold=self.config.detection_threshold,
|
| 28 |
+
pad_if_not_divisible=self.config.pad_if_not_divisible,
|
| 29 |
+
)
|
| 30 |
+
max_num_keypoints = max(
|
| 31 |
+
detection.keypoints.shape[0] for detection in detections
|
| 32 |
+
)
|
| 33 |
+
keypoints = torch.zeros(
|
| 34 |
+
len(detections), max_num_keypoints, 2, device=pixel_values.device
|
| 35 |
+
)
|
| 36 |
+
descriptors = torch.zeros(
|
| 37 |
+
len(detections),
|
| 38 |
+
max_num_keypoints,
|
| 39 |
+
self.config.descriptor_decoder_dim,
|
| 40 |
+
device=pixel_values.device,
|
| 41 |
+
)
|
| 42 |
+
scores = torch.zeros(
|
| 43 |
+
len(detections), max_num_keypoints, device=pixel_values.device
|
| 44 |
+
)
|
| 45 |
+
mask = torch.zeros(
|
| 46 |
+
len(detections), max_num_keypoints, device=pixel_values.device
|
| 47 |
+
)
|
| 48 |
+
for i, detection in enumerate(detections):
|
| 49 |
+
keypoints[i, : detection.keypoints.shape[0]] = detection.keypoints
|
| 50 |
+
descriptors[i, : detection.descriptors.shape[0]] = detection.descriptors
|
| 51 |
+
scores[i, : detection.detection_scores.shape[0]] = (
|
| 52 |
+
detection.detection_scores
|
| 53 |
+
)
|
| 54 |
+
mask[i, : detection.detection_scores.shape[0]] = 1
|
| 55 |
+
width, height = pixel_values.shape[-1], pixel_values.shape[-2]
|
| 56 |
+
keypoints[:, :, 0] = keypoints[:, :, 0] / width
|
| 57 |
+
keypoints[:, :, 1] = keypoints[:, :, 1] / height
|
| 58 |
+
|
| 59 |
+
return SuperPointKeypointDescriptionOutput(
|
| 60 |
+
keypoints=keypoints,
|
| 61 |
+
scores=scores,
|
| 62 |
+
descriptors=descriptors,
|
| 63 |
+
mask=mask,
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
if __name__ == "__main__":
|
| 68 |
+
config = DiskConfig()
|
| 69 |
+
model = DiskForKeypointDetection(config)
|
| 70 |
+
model.save_pretrained("stevenbucaille/disk", push_to_hub=True)
|
| 71 |
+
|
| 72 |
+
AutoConfig.register("disk", DiskConfig)
|
| 73 |
+
AutoModelForKeypointDetection.register(DiskConfig, DiskForKeypointDetection)
|
| 74 |
+
|
| 75 |
+
DiskConfig.register_for_auto_class()
|
| 76 |
+
DiskForKeypointDetection.register_for_auto_class("AutoModelForKeypointDetection")
|