|
from typing import Iterable, Optional, Tuple |
|
|
|
import librosa |
|
import torch |
|
import torch.nn.functional as F |
|
import torchaudio |
|
from torch import Tensor, nn |
|
from transformers import PreTrainedModel, Qwen2Model |
|
from transformers.generation.utils import GenerationMixin |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
from .configuration_step_audio_2 import StepAudio2Config |
|
|
|
|
|
def _mel_filters(n_mels: int) -> torch.Tensor: |
|
"""Load the mel filterbank matrix for projecting STFT into a Mel spectrogram.""" |
|
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}" |
|
if n_mels == 128: |
|
return torch.from_numpy(librosa.filters.mel(sr=16000, n_fft=400, n_mels=128)) |
|
else: |
|
return torch.from_numpy(librosa.filters.mel(sr=16000, n_fft=400, n_mels=80)) |
|
|
|
|
|
def load_audio(file_path, target_rate=16000, max_length=None): |
|
""" |
|
Open an audio file and read as mono waveform, resampling as necessary |
|
If max_length is provided, truncate the audio to that length |
|
""" |
|
waveform, sample_rate = torchaudio.load(file_path) |
|
if sample_rate != target_rate: |
|
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_rate)(waveform) |
|
audio = waveform[0] |
|
|
|
|
|
if max_length is not None and audio.shape[0] > max_length: |
|
audio = audio[:max_length] |
|
|
|
return audio |
|
|
|
def log_mel_spectrogram(audio, n_mels=128, padding=479, device=None): |
|
""" |
|
Compute the log-Mel spectrogram with specific padding for StepAudio |
|
""" |
|
if not torch.is_tensor(audio): |
|
if isinstance(audio, str): |
|
audio = load_audio(audio) |
|
audio = torch.from_numpy(audio) |
|
if device is not None: |
|
audio = audio.to(device) |
|
if padding > 0: |
|
audio = F.pad(audio, (0, padding)) |
|
window = torch.hann_window(400).to(audio.device) |
|
stft = torch.stft(audio, 400, 160, window=window, return_complex=True) |
|
magnitudes = stft[..., :-1].abs() ** 2 |
|
filters = _mel_filters(n_mels) |
|
mel_spec = filters @ magnitudes |
|
|
|
log_spec = torch.clamp(mel_spec, min=1e-10).log10() |
|
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0) |
|
log_spec = (log_spec + 4.0) / 4.0 |
|
return log_spec |
|
|
|
def compute_token_num(max_feature_len): |
|
|
|
|
|
|
|
|
|
max_feature_len = max_feature_len - 2 |
|
encoder_output_dim = (max_feature_len + 1) // 2 // 2 |
|
|
|
|
|
padding = 1 |
|
kernel_size = 3 |
|
stride = 2 |
|
adapter_output_dim = (encoder_output_dim + 2 * padding - kernel_size) // stride + 1 |
|
return adapter_output_dim |
|
|
|
def make_non_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor: |
|
"""Make mask tensor containing indices of non-padded part. |
|
|
|
The sequences in a batch may have different lengths. To enable |
|
batch computing, padding is need to make all sequence in same |
|
size. To avoid the padding part pass value to context dependent |
|
block such as attention or convolution , this padding part is |
|
masked. |
|
|
|
1 for non-padded part and 0 for padded part. |
|
|
|
Parameters |
|
---------- |
|
lengths (torch.Tensor): Batch of lengths (B,). |
|
|
|
Returns: |
|
------- |
|
torch.Tensor: Mask tensor containing indices of padded part (B, max_T). |
|
|
|
Examples: |
|
>>> import torch |
|
>>> import s3tokenizer |
|
>>> lengths = torch.tensor([5, 3, 2]) |
|
>>> masks = s3tokenizer.make_non_pad_mask(lengths) |
|
masks = [[1, 1, 1, 1, 1], |
|
[1, 1, 1, 0, 0], |
|
[1, 1, 0, 0, 0]] |
|
""" |
|
batch_size = lengths.size(0) |
|
max_len = max_len if max_len > 0 else lengths.max().item() |
|
seq_range = torch.arange(0, |
|
max_len, |
|
dtype=torch.int64, |
|
device=lengths.device) |
|
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len) |
|
seq_length_expand = lengths.unsqueeze(-1) |
|
mask = seq_range_expand >= seq_length_expand |
|
return ~mask |
|
|
|
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor: |
|
"""Convert bool-tensor to float-tensor for flash attention. |
|
|
|
Parameters |
|
---------- |
|
lengths (torch.Tensor): Batch of lengths (B, ?). |
|
|
|
Returns: |
|
------- |
|
torch.Tensor: Mask tensor containing indices of padded part (B, ?). |
|
|
|
Examples: |
|
>>> import torch |
|
>>> import s3tokenizer |
|
>>> lengths = torch.tensor([5, 3, 2]) |
|
>>> masks = s3tokenizer.make_non_pad_mask(lengths) |
|
masks = [[1, 1, 1, 1, 1], |
|
[1, 1, 1, 0, 0], |
|
[1, 1, 0, 0, 0]] |
|
>>> new_masks = s3tokenizer.mask_to_bias(masks, torch.float32) |
|
new_masks = [[-0.0000e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00], |
|
[-0.0000e+00, -0.0000e+00, -0.0000e+00, -1.0000e+10, -1.0000e+10], |
|
[-0.0000e+00, -0.0000e+00, -1.0000e+10, -1.0000e+10, -1.0000e+10]] |
|
""" |
|
assert mask.dtype == torch.bool |
|
assert dtype in [torch.float32, torch.bfloat16, torch.float16] |
|
mask = mask.to(dtype) |
|
|
|
|
|
|
|
mask = (1.0 - mask) * -1.0e+10 |
|
return mask |
|
|
|
class LayerNorm(nn.LayerNorm): |
|
def forward(self, input: Tensor) -> Tensor: |
|
return super().forward(input).type(input.dtype) |
|
|
|
class Linear(nn.Linear): |
|
def forward(self, input: Tensor) -> Tensor: |
|
return F.linear( |
|
input, |
|
self.weight.to(input.dtype), |
|
None if self.bias is None else self.bias.to(input.dtype), |
|
) |
|
|
|
class Conv1d(nn.Conv1d): |
|
def _conv_forward( |
|
self, input: Tensor, weight: Tensor, bias: Optional[Tensor] |
|
) -> Tensor: |
|
return super()._conv_forward( |
|
input, weight.to(input.dtype), None if bias is None else bias.to(input.dtype) |
|
) |
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, n_state: int, n_head: int): |
|
super().__init__() |
|
self.n_head = n_head |
|
self.query = Linear(n_state, n_state) |
|
self.key = Linear(n_state, n_state, bias=False) |
|
self.value = Linear(n_state, n_state) |
|
self.out = Linear(n_state, n_state) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
mask: Optional[Tensor] = None, |
|
): |
|
q = self.query(x) |
|
k = self.key(x) |
|
v = self.value(x) |
|
|
|
wv, qk = self.qkv_attention(q, k, v, mask) |
|
return self.out(wv), qk |
|
|
|
def qkv_attention( |
|
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None |
|
): |
|
_, T, D = q.shape |
|
scale = (D // self.n_head) ** -0.25 |
|
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale |
|
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale |
|
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) |
|
|
|
qk = q @ k |
|
if mask is not None: |
|
qk = qk + mask |
|
qk = qk.float() |
|
|
|
w = F.softmax(qk, dim=-1).to(q.dtype) |
|
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach() |
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, n_state: int, n_head: int): |
|
super().__init__() |
|
|
|
self.attn = MultiHeadAttention(n_state, n_head) |
|
self.attn_ln = LayerNorm(n_state) |
|
|
|
n_mlp = n_state * 4 |
|
self.mlp = nn.Sequential( |
|
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state) |
|
) |
|
self.mlp_ln = LayerNorm(n_state) |
|
|
|
def forward( |
|
self, |
|
x: Tensor, |
|
mask: Optional[Tensor] = None, |
|
): |
|
x = x + self.attn(self.attn_ln(x.contiguous()), mask=mask)[0] |
|
x = x + self.mlp(self.mlp_ln(x.contiguous())) |
|
return x |
|
|
|
class AudioEncoder(nn.Module): |
|
def __init__( |
|
self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int |
|
): |
|
super().__init__() |
|
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1) |
|
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1) |
|
self.positional_embedding = nn.Embedding(n_ctx, n_state) |
|
self.positional_embedding.requires_grad_(False) |
|
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList( |
|
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)] |
|
) |
|
self.avg_pooler = nn.AvgPool1d(2, stride=2) |
|
self.after_norm = LayerNorm(n_state) |
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, x: Tensor, x_len: Tensor) -> Tuple[Tensor, Tensor]: |
|
T = x.size(-1) |
|
x = F.gelu(self.conv1(x)) |
|
x = F.gelu(self.conv2(x)) |
|
x = x.permute(0, 2, 1) |
|
mask = make_non_pad_mask(x_len, T).unsqueeze(1) |
|
mask = mask_to_bias(mask[:, :, (T + 1) % 2::2], x.dtype) |
|
x = (x + self.positional_embedding.weight[:x.shape[1], :]).to(x.dtype) |
|
for block in self.blocks: |
|
if self.gradient_checkpointing and self.training: |
|
x = torch.utils.checkpoint.checkpoint(block, x, mask.unsqueeze(1)) |
|
else: |
|
x = block(x, mask.unsqueeze(1)) |
|
x = x.permute(0, 2, 1) |
|
x = self.avg_pooler(x) |
|
x = x.permute(0, 2, 1) |
|
x_len = (x_len + 1) // 2 // 2 |
|
x = self.after_norm(x.contiguous()) |
|
return x, x_len |
|
|
|
class Adaptor(nn.Module): |
|
def __init__( |
|
self, |
|
n_state: int = 1280, |
|
n_hidden: int = 3072, |
|
kernel_size: int = 7, |
|
stride: int = 4 |
|
): |
|
super().__init__() |
|
self.stride = stride |
|
if self.stride != -1: |
|
|
|
self.conv = Conv1d(n_state, n_state, kernel_size, stride, padding=1) |
|
self.linear1 = nn.Linear(n_state, 2048) |
|
self.relu = nn.ReLU() |
|
self.linear2 = nn.Linear(2048, n_hidden) |
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, x: Tensor) -> Tuple[Tensor]: |
|
T = x.size(-1) |
|
if self.stride != -1: |
|
if self.gradient_checkpointing and self.training: |
|
x = torch.utils.checkpoint.checkpoint(self.conv, x.permute(0, 2, 1)) |
|
x = x.permute(0, 2, 1) |
|
else: |
|
x = x.permute(0, 2, 1) |
|
x = F.gelu(self.conv(x)) |
|
x = x.permute(0, 2, 1) |
|
if self.gradient_checkpointing and self.training: |
|
x = torch.utils.checkpoint.checkpoint(self.linear1, x) |
|
x = torch.utils.checkpoint.checkpoint(self.relu, x) |
|
x = torch.utils.checkpoint.checkpoint(self.linear2, x) |
|
else: |
|
x = self.linear1(x) |
|
x = self.relu(x) |
|
x = self.linear2(x) |
|
return x |
|
|
|
class StepAudio2ForCausalLM(PreTrainedModel, GenerationMixin): |
|
config_class = StepAudio2Config |
|
main_input_name = "input_ids" |
|
|
|
|
|
supports_gradient_checkpointing = True |
|
|
|
def __init__(self, config: StepAudio2Config): |
|
super().__init__(config) |
|
if isinstance(config.torch_dtype, str): |
|
dtype = getattr(torch, config.torch_dtype) |
|
else: |
|
dtype = config.torch_dtype |
|
self.model = Qwen2Model(config.text_config) |
|
self.bf16 = dtype==torch.bfloat16 |
|
self.encoder = AudioEncoder( |
|
config.audio_encoder_config.n_mels, config.audio_encoder_config.n_audio_ctx, config.audio_encoder_config.n_audio_state, |
|
config.audio_encoder_config.n_audio_head, config.audio_encoder_config.n_audio_layer |
|
) |
|
self.adapter = Adaptor( |
|
config.audio_encoder_config.n_audio_state, config.audio_encoder_config.llm_dim, |
|
config.audio_encoder_config.kernel_size, config.audio_encoder_config.adapter_stride |
|
) |
|
if self.bf16: |
|
self.encoder = self.encoder.bfloat16() |
|
self.adapter = self.adapter.bfloat16() |
|
self.lm_head = torch.nn.Linear( |
|
config.text_config.hidden_size, |
|
config.text_config.vocab_size, |
|
bias=False, |
|
dtype=dtype |
|
) |
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
wavs=None, |
|
wav_lens=None, |
|
attention_mask=None, |
|
**kwargs |
|
): |
|
hidden_states = self.model.embed_tokens(input_ids) |
|
if wavs is not None: |
|
if self.bf16: |
|
wavs = wavs.bfloat16() |
|
out, feat_lens = self.encoder(wavs, wav_lens) |
|
out = self.adapter(out) |
|
feat_lens = (feat_lens - 1) // 2 + 1 |
|
insert_location = torch.nonzero(input_ids == 151688) |
|
insert_location[:,1] += 1 |
|
for idx in range(len(insert_location)): |
|
i,s = insert_location[idx] |
|
hidden_states[i][s : s+feat_lens[idx]] = out[idx][:feat_lens[idx]] |
|
|
|
x = self.model(inputs_embeds=hidden_states, attention_mask=attention_mask)[0] |
|
logits = self.lm_head(x) |
|
return CausalLMOutputWithPast( |
|
logits=logits, |
|
past_key_values=None, |
|
hidden_states=None, |
|
attentions=None |
|
) |
|
|
|
def get_input_embeddings(self): |
|
"""Return the model's input embeddings - required for GenerationMixin""" |
|
return self.model.embed_tokens |
|
|
|
def get_output_embeddings(self): |
|
"""Return the model's output embeddings (LM head) - required for GenerationMixin""" |
|
return self.lm_head |
|
|
|
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **kwargs): |
|
"""Prepare inputs for generation - required for GenerationMixin""" |
|
|
|
wavs = kwargs.get("wavs", None) |
|
wav_lens = kwargs.get("wav_lens", None) |
|
|
|
|
|
|
|
if "past_key_values" in kwargs and kwargs["past_key_values"] is not None: |
|
|
|
return { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"past_key_values": kwargs.get("past_key_values") |
|
} |
|
|
|
|
|
return { |
|
"input_ids": input_ids, |
|
"attention_mask": attention_mask, |
|
"wavs": wavs, |
|
"wav_lens": wav_lens |
|
} |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
"""Reorder the cache for beam search - required for GenerationMixin if using beam search""" |
|
|
|
|
|
return past_key_values |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
|
|
if hasattr(self.model, 'gradient_checkpointing'): |
|
self.model.gradient_checkpointing = value |
|
|
|
|
|
|
|
if value and not hasattr(self.model, '_gradient_checkpointing_func'): |
|
def _gradient_checkpointing_func(module_to_run, *args, **kwargs): |
|
|
|
|
|
return torch.utils.checkpoint.checkpoint(module_to_run, *args, **kwargs) |
|
|
|
self.model._gradient_checkpointing_func = _gradient_checkpointing_func |
|
|
|
|
|
if hasattr(self.encoder, 'gradient_checkpointing'): |
|
self.encoder.gradient_checkpointing = value |
|
if hasattr(self.adapter, 'gradient_checkpointing'): |
|
self.adapter.gradient_checkpointing = value |
|
|