File size: 16,623 Bytes
e25ea46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
from typing import Iterable, Optional, Tuple
import librosa
import torch
import torch.nn.functional as F
import torchaudio
from torch import Tensor, nn
from transformers import PreTrainedModel, Qwen2Model
from transformers.generation.utils import GenerationMixin
from transformers.modeling_outputs import CausalLMOutputWithPast
from .configuration_step_audio_2 import StepAudio2Config
def _mel_filters(n_mels: int) -> torch.Tensor:
"""Load the mel filterbank matrix for projecting STFT into a Mel spectrogram."""
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
if n_mels == 128:
return torch.from_numpy(librosa.filters.mel(sr=16000, n_fft=400, n_mels=128))
else:
return torch.from_numpy(librosa.filters.mel(sr=16000, n_fft=400, n_mels=80))
def load_audio(file_path, target_rate=16000, max_length=None):
"""
Open an audio file and read as mono waveform, resampling as necessary
If max_length is provided, truncate the audio to that length
"""
waveform, sample_rate = torchaudio.load(file_path)
if sample_rate != target_rate:
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_rate)(waveform)
audio = waveform[0] # get the first channel
# Truncate audio if it exceeds max_length
if max_length is not None and audio.shape[0] > max_length:
audio = audio[:max_length]
return audio
def log_mel_spectrogram(audio, n_mels=128, padding=479, device=None):
"""
Compute the log-Mel spectrogram with specific padding for StepAudio
"""
if not torch.is_tensor(audio):
if isinstance(audio, str):
audio = load_audio(audio)
audio = torch.from_numpy(audio)
if device is not None:
audio = audio.to(device)
if padding > 0:
audio = F.pad(audio, (0, padding))
window = torch.hann_window(400).to(audio.device)
stft = torch.stft(audio, 400, 160, window=window, return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
filters = _mel_filters(n_mels)
mel_spec = filters @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec
def compute_token_num(max_feature_len):
# First, audio goes through encoder:
# 1. conv1: kernel=3, stride=1, padding=1 -> size unchanged
# 2. conv2: kernel=3, stride=2, padding=1 -> size/2
# 3. avg_pooler: kernel=2, stride=2 -> size/2
max_feature_len = max_feature_len - 2 # remove padding
encoder_output_dim = (max_feature_len + 1) // 2 // 2 # after conv2 and avg_pooler
# Then through adaptor (parameters from config file):
padding = 1
kernel_size = 3 # from config: audio_encoder_config.kernel_size
stride = 2 # from config: audio_encoder_config.adapter_stride
adapter_output_dim = (encoder_output_dim + 2 * padding - kernel_size) // stride + 1
return adapter_output_dim
def make_non_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
"""Make mask tensor containing indices of non-padded part.
The sequences in a batch may have different lengths. To enable
batch computing, padding is need to make all sequence in same
size. To avoid the padding part pass value to context dependent
block such as attention or convolution , this padding part is
masked.
1 for non-padded part and 0 for padded part.
Parameters
----------
lengths (torch.Tensor): Batch of lengths (B,).
Returns:
-------
torch.Tensor: Mask tensor containing indices of padded part (B, max_T).
Examples:
>>> import torch
>>> import s3tokenizer
>>> lengths = torch.tensor([5, 3, 2])
>>> masks = s3tokenizer.make_non_pad_mask(lengths)
masks = [[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0]]
"""
batch_size = lengths.size(0)
max_len = max_len if max_len > 0 else lengths.max().item()
seq_range = torch.arange(0,
max_len,
dtype=torch.int64,
device=lengths.device)
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
seq_length_expand = lengths.unsqueeze(-1)
mask = seq_range_expand >= seq_length_expand
return ~mask
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
"""Convert bool-tensor to float-tensor for flash attention.
Parameters
----------
lengths (torch.Tensor): Batch of lengths (B, ?).
Returns:
-------
torch.Tensor: Mask tensor containing indices of padded part (B, ?).
Examples:
>>> import torch
>>> import s3tokenizer
>>> lengths = torch.tensor([5, 3, 2])
>>> masks = s3tokenizer.make_non_pad_mask(lengths)
masks = [[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0],
[1, 1, 0, 0, 0]]
>>> new_masks = s3tokenizer.mask_to_bias(masks, torch.float32)
new_masks = [[-0.0000e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00],
[-0.0000e+00, -0.0000e+00, -0.0000e+00, -1.0000e+10, -1.0000e+10],
[-0.0000e+00, -0.0000e+00, -1.0000e+10, -1.0000e+10, -1.0000e+10]]
"""
assert mask.dtype == torch.bool
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
mask = mask.to(dtype)
# attention mask bias
# NOTE(Mddct): torch.finfo jit issues
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
mask = (1.0 - mask) * -1.0e+10
return mask
class LayerNorm(nn.LayerNorm):
def forward(self, input: Tensor) -> Tensor:
return super().forward(input).type(input.dtype)
class Linear(nn.Linear):
def forward(self, input: Tensor) -> Tensor:
return F.linear(
input,
self.weight.to(input.dtype),
None if self.bias is None else self.bias.to(input.dtype),
)
class Conv1d(nn.Conv1d):
def _conv_forward(
self, input: Tensor, weight: Tensor, bias: Optional[Tensor]
) -> Tensor:
return super()._conv_forward(
input, weight.to(input.dtype), None if bias is None else bias.to(input.dtype)
)
class MultiHeadAttention(nn.Module):
def __init__(self, n_state: int, n_head: int):
super().__init__()
self.n_head = n_head
self.query = Linear(n_state, n_state)
self.key = Linear(n_state, n_state, bias=False)
self.value = Linear(n_state, n_state)
self.out = Linear(n_state, n_state)
def forward(
self,
x: Tensor,
mask: Optional[Tensor] = None,
):
q = self.query(x)
k = self.key(x)
v = self.value(x)
wv, qk = self.qkv_attention(q, k, v, mask)
return self.out(wv), qk
def qkv_attention(
self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None
):
_, T, D = q.shape
scale = (D // self.n_head) ** -0.25
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
qk = q @ k # (B, n_head, T, T)
if mask is not None:
qk = qk + mask
qk = qk.float()
w = F.softmax(qk, dim=-1).to(q.dtype)
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2), qk.detach()
class ResidualAttentionBlock(nn.Module):
def __init__(self, n_state: int, n_head: int):
super().__init__()
self.attn = MultiHeadAttention(n_state, n_head)
self.attn_ln = LayerNorm(n_state)
n_mlp = n_state * 4
self.mlp = nn.Sequential(
Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state)
)
self.mlp_ln = LayerNorm(n_state)
def forward(
self,
x: Tensor,
mask: Optional[Tensor] = None,
):
x = x + self.attn(self.attn_ln(x.contiguous()), mask=mask)[0]
x = x + self.mlp(self.mlp_ln(x.contiguous()))
return x
class AudioEncoder(nn.Module):
def __init__(
self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int
):
super().__init__()
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
self.positional_embedding = nn.Embedding(n_ctx, n_state)
self.positional_embedding.requires_grad_(False)
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
)
self.avg_pooler = nn.AvgPool1d(2, stride=2)
self.after_norm = LayerNorm(n_state)
self.gradient_checkpointing = False
def forward(self, x: Tensor, x_len: Tensor) -> Tuple[Tensor, Tensor]:
T = x.size(-1)
x = F.gelu(self.conv1(x))
x = F.gelu(self.conv2(x))
x = x.permute(0, 2, 1) # (B, T // 2, n_state)
mask = make_non_pad_mask(x_len, T).unsqueeze(1) # (B, 1, T)
mask = mask_to_bias(mask[:, :, (T + 1) % 2::2], x.dtype) # (B, 1, T // 2)
x = (x + self.positional_embedding.weight[:x.shape[1], :]).to(x.dtype)
for block in self.blocks:
if self.gradient_checkpointing and self.training:
x = torch.utils.checkpoint.checkpoint(block, x, mask.unsqueeze(1))
else:
x = block(x, mask.unsqueeze(1))
x = x.permute(0, 2, 1)
x = self.avg_pooler(x)
x = x.permute(0, 2, 1)
x_len = (x_len + 1) // 2 // 2
x = self.after_norm(x.contiguous())
return x, x_len
class Adaptor(nn.Module):
def __init__(
self,
n_state: int = 1280,
n_hidden: int = 3072,
kernel_size: int = 7,
stride: int = 4
):
super().__init__()
self.stride = stride
if self.stride != -1:
# print("self.stride: {}".format(self.stride))
self.conv = Conv1d(n_state, n_state, kernel_size, stride, padding=1)
self.linear1 = nn.Linear(n_state, 2048)
self.relu = nn.ReLU()
self.linear2 = nn.Linear(2048, n_hidden)
self.gradient_checkpointing = False
def forward(self, x: Tensor) -> Tuple[Tensor]:
T = x.size(-1)
if self.stride != -1:
if self.gradient_checkpointing and self.training:
x = torch.utils.checkpoint.checkpoint(self.conv, x.permute(0, 2, 1))
x = x.permute(0, 2, 1)
else:
x = x.permute(0, 2, 1)
x = F.gelu(self.conv(x))
x = x.permute(0, 2, 1)
if self.gradient_checkpointing and self.training:
x = torch.utils.checkpoint.checkpoint(self.linear1, x)
x = torch.utils.checkpoint.checkpoint(self.relu, x)
x = torch.utils.checkpoint.checkpoint(self.linear2, x)
else:
x = self.linear1(x)
x = self.relu(x)
x = self.linear2(x)
return x
class StepAudio2ForCausalLM(PreTrainedModel, GenerationMixin):
config_class = StepAudio2Config
main_input_name = "input_ids"
# Important: Add this attribute to make HF recognize it as a model with generation capability
# _keys_to_ignore_on_load_missing = ["lm_head.weight"]
supports_gradient_checkpointing = True # 新增,声明支持gradient checkpointing
def __init__(self, config: StepAudio2Config):
super().__init__(config)
if isinstance(config.torch_dtype, str):
dtype = getattr(torch, config.torch_dtype)
else:
dtype = config.torch_dtype
self.model = Qwen2Model(config.text_config)
self.bf16 = dtype==torch.bfloat16
self.encoder = AudioEncoder(
config.audio_encoder_config.n_mels, config.audio_encoder_config.n_audio_ctx, config.audio_encoder_config.n_audio_state,
config.audio_encoder_config.n_audio_head, config.audio_encoder_config.n_audio_layer
)
self.adapter = Adaptor(
config.audio_encoder_config.n_audio_state, config.audio_encoder_config.llm_dim,
config.audio_encoder_config.kernel_size, config.audio_encoder_config.adapter_stride
)
if self.bf16:
self.encoder = self.encoder.bfloat16()
self.adapter = self.adapter.bfloat16()
self.lm_head = torch.nn.Linear(
config.hidden_size,
config.vocab_size,
bias=False,
dtype=dtype
)
self.post_init()
def forward(
self,
input_ids=None,
wavs=None,
wav_lens=None,
attention_mask=None,
**kwargs
):
hidden_states = self.model.embed_tokens(input_ids)
if wavs is not None:
if self.bf16:
wavs = wavs.bfloat16()
out, feat_lens = self.encoder(wavs, wav_lens)
out = self.adapter(out)
feat_lens = (feat_lens - 1) // 2 + 1
insert_location = torch.nonzero(input_ids == 151688)
insert_location[:,1] += 1
for idx in range(len(insert_location)):
i,s = insert_location[idx]
hidden_states[i][s : s+feat_lens[idx]] = out[idx][:feat_lens[idx]]
x = self.model(inputs_embeds=hidden_states, attention_mask=attention_mask)[0]
logits = self.lm_head(x)
return CausalLMOutputWithPast(
logits=logits,
past_key_values=None,
hidden_states=None,
attentions=None
)
def get_input_embeddings(self):
"""Return the model's input embeddings - required for GenerationMixin"""
return self.model.embed_tokens
def get_output_embeddings(self):
"""Return the model's output embeddings (LM head) - required for GenerationMixin"""
return self.lm_head
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **kwargs):
"""Prepare inputs for generation - required for GenerationMixin"""
# Keep the wavs and wav_lens from the initial call
wavs = kwargs.get("wavs", None)
wav_lens = kwargs.get("wav_lens", None)
# For generation steps after the first, we don't need to process audio again
# because the audio tokens have already been replaced in the input sequence
if "past_key_values" in kwargs and kwargs["past_key_values"] is not None:
# We're in a generation step, no need to process audio again
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": kwargs.get("past_key_values")
}
# First generation step, include audio processing
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"wavs": wavs,
"wav_lens": wav_lens
}
def _reorder_cache(self, past_key_values, beam_idx):
"""Reorder the cache for beam search - required for GenerationMixin if using beam search"""
# If you're not using past_key_values or beam search, this can be a simple pass-through
# Otherwise implement according to your model's cache structure
return past_key_values
def _set_gradient_checkpointing(self, module, value=False):
# For Qwen2Model
if hasattr(self.model, 'gradient_checkpointing'):
self.model.gradient_checkpointing = value
# Add the missing _gradient_checkpointing_func method to Qwen2Model
# This is what Qwen2Model tries to use when gradient_checkpointing=True
if value and not hasattr(self.model, '_gradient_checkpointing_func'):
def _gradient_checkpointing_func(module_to_run, *args, **kwargs):
# This function wraps torch.utils.checkpoint.checkpoint
# and is used by Qwen2Model to perform checkpointing
return torch.utils.checkpoint.checkpoint(module_to_run, *args, **kwargs)
self.model._gradient_checkpointing_func = _gradient_checkpointing_func
# For custom encoder and adapter
if hasattr(self.encoder, 'gradient_checkpointing'):
self.encoder.gradient_checkpointing = value
if hasattr(self.adapter, 'gradient_checkpointing'):
self.adapter.gradient_checkpointing = value
|