Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697540414.4c6324b99746.1159.7 +3 -0
- test.tsv +0 -0
- training.log +237 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b9b549fb0bba7c8affe9743b7ab2c51bb20095e9f8d643a3984bfad524f7b10
|
3 |
+
size 440942021
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 11:01:33 0.0000 0.3490 0.0567 0.7419 0.7764 0.7588 0.6323
|
3 |
+
2 11:02:54 0.0000 0.0807 0.0535 0.7555 0.7300 0.7425 0.6223
|
4 |
+
3 11:04:11 0.0000 0.0490 0.0773 0.7176 0.7932 0.7535 0.6184
|
5 |
+
4 11:05:27 0.0000 0.0386 0.1029 0.7407 0.7595 0.7500 0.6164
|
6 |
+
5 11:06:48 0.0000 0.0239 0.1020 0.7510 0.8017 0.7755 0.6485
|
7 |
+
6 11:08:09 0.0000 0.0175 0.1065 0.7579 0.8059 0.7812 0.6564
|
8 |
+
7 11:09:29 0.0000 0.0109 0.1156 0.7884 0.8017 0.7950 0.6786
|
9 |
+
8 11:10:47 0.0000 0.0076 0.1203 0.7924 0.7890 0.7907 0.6679
|
10 |
+
9 11:12:04 0.0000 0.0044 0.1235 0.7640 0.8059 0.7844 0.6632
|
11 |
+
10 11:13:23 0.0000 0.0029 0.1283 0.7689 0.8143 0.7910 0.6748
|
runs/events.out.tfevents.1697540414.4c6324b99746.1159.7
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c953da7d7ea03ca5729b1b5080b3e872e357b2f9ae5c62f34326ebf67083b55
|
3 |
+
size 434848
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 11:00:14,315 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 11:00:14,316 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 11:00:14,317 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 11:00:14,317 MultiCorpus: 6183 train + 680 dev + 2113 test sentences
|
48 |
+
- NER_HIPE_2022 Corpus: 6183 train + 680 dev + 2113 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/topres19th/en/with_doc_seperator
|
49 |
+
2023-10-17 11:00:14,317 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 11:00:14,317 Train: 6183 sentences
|
51 |
+
2023-10-17 11:00:14,317 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 11:00:14,317 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 11:00:14,317 Training Params:
|
54 |
+
2023-10-17 11:00:14,317 - learning_rate: "5e-05"
|
55 |
+
2023-10-17 11:00:14,317 - mini_batch_size: "8"
|
56 |
+
2023-10-17 11:00:14,317 - max_epochs: "10"
|
57 |
+
2023-10-17 11:00:14,317 - shuffle: "True"
|
58 |
+
2023-10-17 11:00:14,317 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 11:00:14,318 Plugins:
|
60 |
+
2023-10-17 11:00:14,318 - TensorboardLogger
|
61 |
+
2023-10-17 11:00:14,318 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 11:00:14,318 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 11:00:14,318 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 11:00:14,318 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 11:00:14,318 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 11:00:14,318 Computation:
|
67 |
+
2023-10-17 11:00:14,318 - compute on device: cuda:0
|
68 |
+
2023-10-17 11:00:14,318 - embedding storage: none
|
69 |
+
2023-10-17 11:00:14,318 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 11:00:14,318 Model training base path: "hmbench-topres19th/en-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
|
71 |
+
2023-10-17 11:00:14,318 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 11:00:14,318 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 11:00:14,318 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 11:00:21,885 epoch 1 - iter 77/773 - loss 2.45093293 - time (sec): 7.56 - samples/sec: 1493.76 - lr: 0.000005 - momentum: 0.000000
|
75 |
+
2023-10-17 11:00:29,944 epoch 1 - iter 154/773 - loss 1.24837000 - time (sec): 15.62 - samples/sec: 1587.57 - lr: 0.000010 - momentum: 0.000000
|
76 |
+
2023-10-17 11:00:37,607 epoch 1 - iter 231/773 - loss 0.88720878 - time (sec): 23.29 - samples/sec: 1621.94 - lr: 0.000015 - momentum: 0.000000
|
77 |
+
2023-10-17 11:00:45,319 epoch 1 - iter 308/773 - loss 0.69711197 - time (sec): 31.00 - samples/sec: 1630.66 - lr: 0.000020 - momentum: 0.000000
|
78 |
+
2023-10-17 11:00:52,416 epoch 1 - iter 385/773 - loss 0.58170860 - time (sec): 38.10 - samples/sec: 1662.22 - lr: 0.000025 - momentum: 0.000000
|
79 |
+
2023-10-17 11:00:59,813 epoch 1 - iter 462/773 - loss 0.50112244 - time (sec): 45.49 - samples/sec: 1674.06 - lr: 0.000030 - momentum: 0.000000
|
80 |
+
2023-10-17 11:01:07,113 epoch 1 - iter 539/773 - loss 0.44948369 - time (sec): 52.79 - samples/sec: 1657.75 - lr: 0.000035 - momentum: 0.000000
|
81 |
+
2023-10-17 11:01:14,963 epoch 1 - iter 616/773 - loss 0.40797204 - time (sec): 60.64 - samples/sec: 1645.26 - lr: 0.000040 - momentum: 0.000000
|
82 |
+
2023-10-17 11:01:22,928 epoch 1 - iter 693/773 - loss 0.37438356 - time (sec): 68.61 - samples/sec: 1637.73 - lr: 0.000045 - momentum: 0.000000
|
83 |
+
2023-10-17 11:01:30,630 epoch 1 - iter 770/773 - loss 0.34972134 - time (sec): 76.31 - samples/sec: 1623.90 - lr: 0.000050 - momentum: 0.000000
|
84 |
+
2023-10-17 11:01:30,909 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 11:01:30,910 EPOCH 1 done: loss 0.3490 - lr: 0.000050
|
86 |
+
2023-10-17 11:01:33,275 DEV : loss 0.05666542798280716 - f1-score (micro avg) 0.7588
|
87 |
+
2023-10-17 11:01:33,307 saving best model
|
88 |
+
2023-10-17 11:01:33,850 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 11:01:41,159 epoch 2 - iter 77/773 - loss 0.10595151 - time (sec): 7.31 - samples/sec: 1665.95 - lr: 0.000049 - momentum: 0.000000
|
90 |
+
2023-10-17 11:01:48,833 epoch 2 - iter 154/773 - loss 0.09841306 - time (sec): 14.98 - samples/sec: 1681.95 - lr: 0.000049 - momentum: 0.000000
|
91 |
+
2023-10-17 11:01:56,463 epoch 2 - iter 231/773 - loss 0.09574344 - time (sec): 22.61 - samples/sec: 1633.46 - lr: 0.000048 - momentum: 0.000000
|
92 |
+
2023-10-17 11:02:04,412 epoch 2 - iter 308/773 - loss 0.09169926 - time (sec): 30.56 - samples/sec: 1613.33 - lr: 0.000048 - momentum: 0.000000
|
93 |
+
2023-10-17 11:02:12,560 epoch 2 - iter 385/773 - loss 0.08863266 - time (sec): 38.71 - samples/sec: 1583.60 - lr: 0.000047 - momentum: 0.000000
|
94 |
+
2023-10-17 11:02:20,339 epoch 2 - iter 462/773 - loss 0.08698644 - time (sec): 46.49 - samples/sec: 1577.22 - lr: 0.000047 - momentum: 0.000000
|
95 |
+
2023-10-17 11:02:28,249 epoch 2 - iter 539/773 - loss 0.08349280 - time (sec): 54.40 - samples/sec: 1581.51 - lr: 0.000046 - momentum: 0.000000
|
96 |
+
2023-10-17 11:02:35,216 epoch 2 - iter 616/773 - loss 0.08431562 - time (sec): 61.36 - samples/sec: 1604.20 - lr: 0.000046 - momentum: 0.000000
|
97 |
+
2023-10-17 11:02:42,366 epoch 2 - iter 693/773 - loss 0.08313786 - time (sec): 68.51 - samples/sec: 1621.52 - lr: 0.000045 - momentum: 0.000000
|
98 |
+
2023-10-17 11:02:50,101 epoch 2 - iter 770/773 - loss 0.08075274 - time (sec): 76.25 - samples/sec: 1625.77 - lr: 0.000044 - momentum: 0.000000
|
99 |
+
2023-10-17 11:02:50,377 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 11:02:50,377 EPOCH 2 done: loss 0.0807 - lr: 0.000044
|
101 |
+
2023-10-17 11:02:54,039 DEV : loss 0.05350477248430252 - f1-score (micro avg) 0.7425
|
102 |
+
2023-10-17 11:02:54,072 ----------------------------------------------------------------------------------------------------
|
103 |
+
2023-10-17 11:03:01,603 epoch 3 - iter 77/773 - loss 0.05640998 - time (sec): 7.53 - samples/sec: 1560.20 - lr: 0.000044 - momentum: 0.000000
|
104 |
+
2023-10-17 11:03:09,509 epoch 3 - iter 154/773 - loss 0.05629241 - time (sec): 15.43 - samples/sec: 1659.98 - lr: 0.000043 - momentum: 0.000000
|
105 |
+
2023-10-17 11:03:17,025 epoch 3 - iter 231/773 - loss 0.05247215 - time (sec): 22.95 - samples/sec: 1689.23 - lr: 0.000043 - momentum: 0.000000
|
106 |
+
2023-10-17 11:03:23,846 epoch 3 - iter 308/773 - loss 0.05112877 - time (sec): 29.77 - samples/sec: 1690.16 - lr: 0.000042 - momentum: 0.000000
|
107 |
+
2023-10-17 11:03:30,759 epoch 3 - iter 385/773 - loss 0.05111415 - time (sec): 36.68 - samples/sec: 1697.84 - lr: 0.000042 - momentum: 0.000000
|
108 |
+
2023-10-17 11:03:37,744 epoch 3 - iter 462/773 - loss 0.05066311 - time (sec): 43.67 - samples/sec: 1718.06 - lr: 0.000041 - momentum: 0.000000
|
109 |
+
2023-10-17 11:03:44,762 epoch 3 - iter 539/773 - loss 0.04970420 - time (sec): 50.69 - samples/sec: 1718.08 - lr: 0.000041 - momentum: 0.000000
|
110 |
+
2023-10-17 11:03:52,179 epoch 3 - iter 616/773 - loss 0.05056488 - time (sec): 58.10 - samples/sec: 1711.20 - lr: 0.000040 - momentum: 0.000000
|
111 |
+
2023-10-17 11:04:00,191 epoch 3 - iter 693/773 - loss 0.04984793 - time (sec): 66.12 - samples/sec: 1698.05 - lr: 0.000039 - momentum: 0.000000
|
112 |
+
2023-10-17 11:04:07,775 epoch 3 - iter 770/773 - loss 0.04912347 - time (sec): 73.70 - samples/sec: 1681.26 - lr: 0.000039 - momentum: 0.000000
|
113 |
+
2023-10-17 11:04:08,068 ----------------------------------------------------------------------------------------------------
|
114 |
+
2023-10-17 11:04:08,069 EPOCH 3 done: loss 0.0490 - lr: 0.000039
|
115 |
+
2023-10-17 11:04:11,130 DEV : loss 0.07729422301054001 - f1-score (micro avg) 0.7535
|
116 |
+
2023-10-17 11:04:11,162 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-17 11:04:18,431 epoch 4 - iter 77/773 - loss 0.04152581 - time (sec): 7.27 - samples/sec: 1784.91 - lr: 0.000038 - momentum: 0.000000
|
118 |
+
2023-10-17 11:04:25,836 epoch 4 - iter 154/773 - loss 0.04153601 - time (sec): 14.67 - samples/sec: 1725.78 - lr: 0.000038 - momentum: 0.000000
|
119 |
+
2023-10-17 11:04:33,460 epoch 4 - iter 231/773 - loss 0.03745722 - time (sec): 22.30 - samples/sec: 1670.11 - lr: 0.000037 - momentum: 0.000000
|
120 |
+
2023-10-17 11:04:40,594 epoch 4 - iter 308/773 - loss 0.03833193 - time (sec): 29.43 - samples/sec: 1674.11 - lr: 0.000037 - momentum: 0.000000
|
121 |
+
2023-10-17 11:04:48,298 epoch 4 - iter 385/773 - loss 0.03751315 - time (sec): 37.13 - samples/sec: 1673.41 - lr: 0.000036 - momentum: 0.000000
|
122 |
+
2023-10-17 11:04:55,464 epoch 4 - iter 462/773 - loss 0.04103089 - time (sec): 44.30 - samples/sec: 1679.69 - lr: 0.000036 - momentum: 0.000000
|
123 |
+
2023-10-17 11:05:02,532 epoch 4 - iter 539/773 - loss 0.04171505 - time (sec): 51.37 - samples/sec: 1686.35 - lr: 0.000035 - momentum: 0.000000
|
124 |
+
2023-10-17 11:05:09,597 epoch 4 - iter 616/773 - loss 0.04053471 - time (sec): 58.43 - samples/sec: 1704.07 - lr: 0.000034 - momentum: 0.000000
|
125 |
+
2023-10-17 11:05:16,908 epoch 4 - iter 693/773 - loss 0.04085799 - time (sec): 65.74 - samples/sec: 1703.30 - lr: 0.000034 - momentum: 0.000000
|
126 |
+
2023-10-17 11:05:23,845 epoch 4 - iter 770/773 - loss 0.03858981 - time (sec): 72.68 - samples/sec: 1703.53 - lr: 0.000033 - momentum: 0.000000
|
127 |
+
2023-10-17 11:05:24,115 ----------------------------------------------------------------------------------------------------
|
128 |
+
2023-10-17 11:05:24,115 EPOCH 4 done: loss 0.0386 - lr: 0.000033
|
129 |
+
2023-10-17 11:05:27,335 DEV : loss 0.10291995108127594 - f1-score (micro avg) 0.75
|
130 |
+
2023-10-17 11:05:27,368 ----------------------------------------------------------------------------------------------------
|
131 |
+
2023-10-17 11:05:34,468 epoch 5 - iter 77/773 - loss 0.02121432 - time (sec): 7.10 - samples/sec: 1722.34 - lr: 0.000033 - momentum: 0.000000
|
132 |
+
2023-10-17 11:05:41,809 epoch 5 - iter 154/773 - loss 0.02173581 - time (sec): 14.44 - samples/sec: 1656.77 - lr: 0.000032 - momentum: 0.000000
|
133 |
+
2023-10-17 11:05:49,386 epoch 5 - iter 231/773 - loss 0.02284222 - time (sec): 22.02 - samples/sec: 1623.47 - lr: 0.000032 - momentum: 0.000000
|
134 |
+
2023-10-17 11:05:57,449 epoch 5 - iter 308/773 - loss 0.02224722 - time (sec): 30.08 - samples/sec: 1599.93 - lr: 0.000031 - momentum: 0.000000
|
135 |
+
2023-10-17 11:06:05,538 epoch 5 - iter 385/773 - loss 0.02315292 - time (sec): 38.17 - samples/sec: 1584.64 - lr: 0.000031 - momentum: 0.000000
|
136 |
+
2023-10-17 11:06:13,313 epoch 5 - iter 462/773 - loss 0.02280264 - time (sec): 45.94 - samples/sec: 1586.27 - lr: 0.000030 - momentum: 0.000000
|
137 |
+
2023-10-17 11:06:21,346 epoch 5 - iter 539/773 - loss 0.02222341 - time (sec): 53.98 - samples/sec: 1605.57 - lr: 0.000029 - momentum: 0.000000
|
138 |
+
2023-10-17 11:06:29,147 epoch 5 - iter 616/773 - loss 0.02225636 - time (sec): 61.78 - samples/sec: 1604.81 - lr: 0.000029 - momentum: 0.000000
|
139 |
+
2023-10-17 11:06:36,844 epoch 5 - iter 693/773 - loss 0.02247422 - time (sec): 69.47 - samples/sec: 1598.18 - lr: 0.000028 - momentum: 0.000000
|
140 |
+
2023-10-17 11:06:44,690 epoch 5 - iter 770/773 - loss 0.02385905 - time (sec): 77.32 - samples/sec: 1601.97 - lr: 0.000028 - momentum: 0.000000
|
141 |
+
2023-10-17 11:06:44,982 ----------------------------------------------------------------------------------------------------
|
142 |
+
2023-10-17 11:06:44,983 EPOCH 5 done: loss 0.0239 - lr: 0.000028
|
143 |
+
2023-10-17 11:06:47,973 DEV : loss 0.10200614482164383 - f1-score (micro avg) 0.7755
|
144 |
+
2023-10-17 11:06:48,006 saving best model
|
145 |
+
2023-10-17 11:06:49,423 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-17 11:06:57,017 epoch 6 - iter 77/773 - loss 0.02265088 - time (sec): 7.59 - samples/sec: 1636.48 - lr: 0.000027 - momentum: 0.000000
|
147 |
+
2023-10-17 11:07:04,370 epoch 6 - iter 154/773 - loss 0.01754504 - time (sec): 14.94 - samples/sec: 1670.67 - lr: 0.000027 - momentum: 0.000000
|
148 |
+
2023-10-17 11:07:11,949 epoch 6 - iter 231/773 - loss 0.02091300 - time (sec): 22.52 - samples/sec: 1669.32 - lr: 0.000026 - momentum: 0.000000
|
149 |
+
2023-10-17 11:07:19,655 epoch 6 - iter 308/773 - loss 0.02004128 - time (sec): 30.23 - samples/sec: 1659.22 - lr: 0.000026 - momentum: 0.000000
|
150 |
+
2023-10-17 11:07:27,169 epoch 6 - iter 385/773 - loss 0.01990145 - time (sec): 37.74 - samples/sec: 1647.46 - lr: 0.000025 - momentum: 0.000000
|
151 |
+
2023-10-17 11:07:34,917 epoch 6 - iter 462/773 - loss 0.01815685 - time (sec): 45.49 - samples/sec: 1638.47 - lr: 0.000024 - momentum: 0.000000
|
152 |
+
2023-10-17 11:07:42,565 epoch 6 - iter 539/773 - loss 0.01761772 - time (sec): 53.14 - samples/sec: 1653.33 - lr: 0.000024 - momentum: 0.000000
|
153 |
+
2023-10-17 11:07:50,486 epoch 6 - iter 616/773 - loss 0.01780920 - time (sec): 61.06 - samples/sec: 1629.64 - lr: 0.000023 - momentum: 0.000000
|
154 |
+
2023-10-17 11:07:58,505 epoch 6 - iter 693/773 - loss 0.01725283 - time (sec): 69.08 - samples/sec: 1615.06 - lr: 0.000023 - momentum: 0.000000
|
155 |
+
2023-10-17 11:08:06,220 epoch 6 - iter 770/773 - loss 0.01731812 - time (sec): 76.79 - samples/sec: 1612.45 - lr: 0.000022 - momentum: 0.000000
|
156 |
+
2023-10-17 11:08:06,512 ----------------------------------------------------------------------------------------------------
|
157 |
+
2023-10-17 11:08:06,513 EPOCH 6 done: loss 0.0175 - lr: 0.000022
|
158 |
+
2023-10-17 11:08:09,372 DEV : loss 0.1064695492386818 - f1-score (micro avg) 0.7812
|
159 |
+
2023-10-17 11:08:09,402 saving best model
|
160 |
+
2023-10-17 11:08:10,827 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-17 11:08:19,013 epoch 7 - iter 77/773 - loss 0.00823321 - time (sec): 8.18 - samples/sec: 1534.57 - lr: 0.000022 - momentum: 0.000000
|
162 |
+
2023-10-17 11:08:27,207 epoch 7 - iter 154/773 - loss 0.00771650 - time (sec): 16.38 - samples/sec: 1596.41 - lr: 0.000021 - momentum: 0.000000
|
163 |
+
2023-10-17 11:08:34,794 epoch 7 - iter 231/773 - loss 0.00743188 - time (sec): 23.96 - samples/sec: 1601.35 - lr: 0.000021 - momentum: 0.000000
|
164 |
+
2023-10-17 11:08:42,358 epoch 7 - iter 308/773 - loss 0.00932527 - time (sec): 31.53 - samples/sec: 1601.51 - lr: 0.000020 - momentum: 0.000000
|
165 |
+
2023-10-17 11:08:49,801 epoch 7 - iter 385/773 - loss 0.01044298 - time (sec): 38.97 - samples/sec: 1607.78 - lr: 0.000019 - momentum: 0.000000
|
166 |
+
2023-10-17 11:08:57,085 epoch 7 - iter 462/773 - loss 0.01033137 - time (sec): 46.25 - samples/sec: 1603.80 - lr: 0.000019 - momentum: 0.000000
|
167 |
+
2023-10-17 11:09:04,079 epoch 7 - iter 539/773 - loss 0.01077934 - time (sec): 53.25 - samples/sec: 1616.94 - lr: 0.000018 - momentum: 0.000000
|
168 |
+
2023-10-17 11:09:10,970 epoch 7 - iter 616/773 - loss 0.01030466 - time (sec): 60.14 - samples/sec: 1644.61 - lr: 0.000018 - momentum: 0.000000
|
169 |
+
2023-10-17 11:09:18,516 epoch 7 - iter 693/773 - loss 0.01069559 - time (sec): 67.68 - samples/sec: 1651.42 - lr: 0.000017 - momentum: 0.000000
|
170 |
+
2023-10-17 11:09:26,294 epoch 7 - iter 770/773 - loss 0.01086256 - time (sec): 75.46 - samples/sec: 1642.31 - lr: 0.000017 - momentum: 0.000000
|
171 |
+
2023-10-17 11:09:26,580 ----------------------------------------------------------------------------------------------------
|
172 |
+
2023-10-17 11:09:26,580 EPOCH 7 done: loss 0.0109 - lr: 0.000017
|
173 |
+
2023-10-17 11:09:29,687 DEV : loss 0.1156071275472641 - f1-score (micro avg) 0.795
|
174 |
+
2023-10-17 11:09:29,716 saving best model
|
175 |
+
2023-10-17 11:09:30,324 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-17 11:09:37,985 epoch 8 - iter 77/773 - loss 0.00730225 - time (sec): 7.66 - samples/sec: 1614.48 - lr: 0.000016 - momentum: 0.000000
|
177 |
+
2023-10-17 11:09:45,493 epoch 8 - iter 154/773 - loss 0.00623081 - time (sec): 15.17 - samples/sec: 1667.90 - lr: 0.000016 - momentum: 0.000000
|
178 |
+
2023-10-17 11:09:52,733 epoch 8 - iter 231/773 - loss 0.00556449 - time (sec): 22.41 - samples/sec: 1656.66 - lr: 0.000015 - momentum: 0.000000
|
179 |
+
2023-10-17 11:10:00,021 epoch 8 - iter 308/773 - loss 0.00601470 - time (sec): 29.69 - samples/sec: 1667.09 - lr: 0.000014 - momentum: 0.000000
|
180 |
+
2023-10-17 11:10:07,775 epoch 8 - iter 385/773 - loss 0.00628428 - time (sec): 37.45 - samples/sec: 1664.34 - lr: 0.000014 - momentum: 0.000000
|
181 |
+
2023-10-17 11:10:14,899 epoch 8 - iter 462/773 - loss 0.00605850 - time (sec): 44.57 - samples/sec: 1683.47 - lr: 0.000013 - momentum: 0.000000
|
182 |
+
2023-10-17 11:10:22,424 epoch 8 - iter 539/773 - loss 0.00700050 - time (sec): 52.10 - samples/sec: 1672.76 - lr: 0.000013 - momentum: 0.000000
|
183 |
+
2023-10-17 11:10:29,379 epoch 8 - iter 616/773 - loss 0.00759703 - time (sec): 59.05 - samples/sec: 1679.44 - lr: 0.000012 - momentum: 0.000000
|
184 |
+
2023-10-17 11:10:36,671 epoch 8 - iter 693/773 - loss 0.00788866 - time (sec): 66.35 - samples/sec: 1683.27 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2023-10-17 11:10:43,865 epoch 8 - iter 770/773 - loss 0.00753285 - time (sec): 73.54 - samples/sec: 1682.46 - lr: 0.000011 - momentum: 0.000000
|
186 |
+
2023-10-17 11:10:44,140 ----------------------------------------------------------------------------------------------------
|
187 |
+
2023-10-17 11:10:44,141 EPOCH 8 done: loss 0.0076 - lr: 0.000011
|
188 |
+
2023-10-17 11:10:47,005 DEV : loss 0.12029711902141571 - f1-score (micro avg) 0.7907
|
189 |
+
2023-10-17 11:10:47,036 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-17 11:10:55,094 epoch 9 - iter 77/773 - loss 0.00421926 - time (sec): 8.06 - samples/sec: 1520.59 - lr: 0.000011 - momentum: 0.000000
|
191 |
+
2023-10-17 11:11:02,690 epoch 9 - iter 154/773 - loss 0.00644406 - time (sec): 15.65 - samples/sec: 1544.60 - lr: 0.000010 - momentum: 0.000000
|
192 |
+
2023-10-17 11:11:10,046 epoch 9 - iter 231/773 - loss 0.00582051 - time (sec): 23.01 - samples/sec: 1641.13 - lr: 0.000009 - momentum: 0.000000
|
193 |
+
2023-10-17 11:11:17,664 epoch 9 - iter 308/773 - loss 0.00577635 - time (sec): 30.63 - samples/sec: 1616.34 - lr: 0.000009 - momentum: 0.000000
|
194 |
+
2023-10-17 11:11:24,755 epoch 9 - iter 385/773 - loss 0.00505832 - time (sec): 37.72 - samples/sec: 1630.49 - lr: 0.000008 - momentum: 0.000000
|
195 |
+
2023-10-17 11:11:31,696 epoch 9 - iter 462/773 - loss 0.00461600 - time (sec): 44.66 - samples/sec: 1643.56 - lr: 0.000008 - momentum: 0.000000
|
196 |
+
2023-10-17 11:11:38,576 epoch 9 - iter 539/773 - loss 0.00451370 - time (sec): 51.54 - samples/sec: 1659.27 - lr: 0.000007 - momentum: 0.000000
|
197 |
+
2023-10-17 11:11:45,934 epoch 9 - iter 616/773 - loss 0.00431455 - time (sec): 58.90 - samples/sec: 1685.41 - lr: 0.000007 - momentum: 0.000000
|
198 |
+
2023-10-17 11:11:53,167 epoch 9 - iter 693/773 - loss 0.00441306 - time (sec): 66.13 - samples/sec: 1680.31 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-10-17 11:12:00,970 epoch 9 - iter 770/773 - loss 0.00435539 - time (sec): 73.93 - samples/sec: 1677.04 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-17 11:12:01,228 ----------------------------------------------------------------------------------------------------
|
201 |
+
2023-10-17 11:12:01,228 EPOCH 9 done: loss 0.0044 - lr: 0.000006
|
202 |
+
2023-10-17 11:12:04,174 DEV : loss 0.12349887937307358 - f1-score (micro avg) 0.7844
|
203 |
+
2023-10-17 11:12:04,207 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-17 11:12:11,747 epoch 10 - iter 77/773 - loss 0.00455782 - time (sec): 7.54 - samples/sec: 1732.92 - lr: 0.000005 - momentum: 0.000000
|
205 |
+
2023-10-17 11:12:19,108 epoch 10 - iter 154/773 - loss 0.00420301 - time (sec): 14.90 - samples/sec: 1648.39 - lr: 0.000005 - momentum: 0.000000
|
206 |
+
2023-10-17 11:12:26,608 epoch 10 - iter 231/773 - loss 0.00367766 - time (sec): 22.40 - samples/sec: 1622.02 - lr: 0.000004 - momentum: 0.000000
|
207 |
+
2023-10-17 11:12:33,675 epoch 10 - iter 308/773 - loss 0.00347476 - time (sec): 29.47 - samples/sec: 1663.99 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-17 11:12:41,045 epoch 10 - iter 385/773 - loss 0.00326384 - time (sec): 36.84 - samples/sec: 1660.68 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-17 11:12:49,048 epoch 10 - iter 462/773 - loss 0.00312465 - time (sec): 44.84 - samples/sec: 1633.05 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-17 11:12:57,102 epoch 10 - iter 539/773 - loss 0.00324546 - time (sec): 52.89 - samples/sec: 1628.44 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-17 11:13:05,165 epoch 10 - iter 616/773 - loss 0.00279880 - time (sec): 60.96 - samples/sec: 1644.46 - lr: 0.000001 - momentum: 0.000000
|
212 |
+
2023-10-17 11:13:12,609 epoch 10 - iter 693/773 - loss 0.00267431 - time (sec): 68.40 - samples/sec: 1634.31 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-17 11:13:20,306 epoch 10 - iter 770/773 - loss 0.00286368 - time (sec): 76.10 - samples/sec: 1628.24 - lr: 0.000000 - momentum: 0.000000
|
214 |
+
2023-10-17 11:13:20,580 ----------------------------------------------------------------------------------------------------
|
215 |
+
2023-10-17 11:13:20,581 EPOCH 10 done: loss 0.0029 - lr: 0.000000
|
216 |
+
2023-10-17 11:13:23,848 DEV : loss 0.12833575904369354 - f1-score (micro avg) 0.791
|
217 |
+
2023-10-17 11:13:24,507 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-17 11:13:24,509 Loading model from best epoch ...
|
219 |
+
2023-10-17 11:13:27,115 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-BUILDING, B-BUILDING, E-BUILDING, I-BUILDING, S-STREET, B-STREET, E-STREET, I-STREET
|
220 |
+
2023-10-17 11:13:36,470
|
221 |
+
Results:
|
222 |
+
- F-score (micro) 0.8191
|
223 |
+
- F-score (macro) 0.7465
|
224 |
+
- Accuracy 0.7116
|
225 |
+
|
226 |
+
By class:
|
227 |
+
precision recall f1-score support
|
228 |
+
|
229 |
+
LOC 0.8524 0.8668 0.8595 946
|
230 |
+
BUILDING 0.6506 0.5838 0.6154 185
|
231 |
+
STREET 0.8478 0.6964 0.7647 56
|
232 |
+
|
233 |
+
micro avg 0.8237 0.8147 0.8191 1187
|
234 |
+
macro avg 0.7836 0.7157 0.7465 1187
|
235 |
+
weighted avg 0.8207 0.8147 0.8170 1187
|
236 |
+
|
237 |
+
2023-10-17 11:13:36,470 ----------------------------------------------------------------------------------------------------
|