File size: 25,355 Bytes
35e202b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
2023-10-14 14:40:59,478 ----------------------------------------------------------------------------------------------------
2023-10-14 14:40:59,480 Model: "SequenceTagger(
  (embeddings): ByT5Embeddings(
    (model): T5EncoderModel(
      (shared): Embedding(384, 1472)
      (encoder): T5Stack(
        (embed_tokens): Embedding(384, 1472)
        (block): ModuleList(
          (0): T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                  (relative_attention_bias): Embedding(32, 6)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
          (1-11): 11 x T5Block(
            (layer): ModuleList(
              (0): T5LayerSelfAttention(
                (SelfAttention): T5Attention(
                  (q): Linear(in_features=1472, out_features=384, bias=False)
                  (k): Linear(in_features=1472, out_features=384, bias=False)
                  (v): Linear(in_features=1472, out_features=384, bias=False)
                  (o): Linear(in_features=384, out_features=1472, bias=False)
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (1): T5LayerFF(
                (DenseReluDense): T5DenseGatedActDense(
                  (wi_0): Linear(in_features=1472, out_features=3584, bias=False)
                  (wi_1): Linear(in_features=1472, out_features=3584, bias=False)
                  (wo): Linear(in_features=3584, out_features=1472, bias=False)
                  (dropout): Dropout(p=0.1, inplace=False)
                  (act): NewGELUActivation()
                )
                (layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
          )
        )
        (final_layer_norm): FusedRMSNorm(torch.Size([1472]), eps=1e-06, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=1472, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-14 14:40:59,481 ----------------------------------------------------------------------------------------------------
2023-10-14 14:40:59,481 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
 - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-14 14:40:59,481 ----------------------------------------------------------------------------------------------------
2023-10-14 14:40:59,481 Train:  14465 sentences
2023-10-14 14:40:59,481         (train_with_dev=False, train_with_test=False)
2023-10-14 14:40:59,481 ----------------------------------------------------------------------------------------------------
2023-10-14 14:40:59,481 Training Params:
2023-10-14 14:40:59,481  - learning_rate: "0.00015" 
2023-10-14 14:40:59,481  - mini_batch_size: "4"
2023-10-14 14:40:59,481  - max_epochs: "10"
2023-10-14 14:40:59,481  - shuffle: "True"
2023-10-14 14:40:59,481 ----------------------------------------------------------------------------------------------------
2023-10-14 14:40:59,481 Plugins:
2023-10-14 14:40:59,481  - TensorboardLogger
2023-10-14 14:40:59,482  - LinearScheduler | warmup_fraction: '0.1'
2023-10-14 14:40:59,482 ----------------------------------------------------------------------------------------------------
2023-10-14 14:40:59,482 Final evaluation on model from best epoch (best-model.pt)
2023-10-14 14:40:59,482  - metric: "('micro avg', 'f1-score')"
2023-10-14 14:40:59,482 ----------------------------------------------------------------------------------------------------
2023-10-14 14:40:59,482 Computation:
2023-10-14 14:40:59,482  - compute on device: cuda:0
2023-10-14 14:40:59,482  - embedding storage: none
2023-10-14 14:40:59,482 ----------------------------------------------------------------------------------------------------
2023-10-14 14:40:59,482 Model training base path: "hmbench-letemps/fr-hmbyt5-preliminary/byt5-small-historic-multilingual-span20-flax-bs4-wsFalse-e10-lr0.00015-poolingfirst-layers-1-crfFalse-4"
2023-10-14 14:40:59,482 ----------------------------------------------------------------------------------------------------
2023-10-14 14:40:59,482 ----------------------------------------------------------------------------------------------------
2023-10-14 14:40:59,482 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-14 14:42:41,066 epoch 1 - iter 361/3617 - loss 2.50686900 - time (sec): 101.58 - samples/sec: 360.10 - lr: 0.000015 - momentum: 0.000000
2023-10-14 14:44:22,406 epoch 1 - iter 722/3617 - loss 2.10752883 - time (sec): 202.92 - samples/sec: 369.39 - lr: 0.000030 - momentum: 0.000000
2023-10-14 14:46:12,979 epoch 1 - iter 1083/3617 - loss 1.65683609 - time (sec): 313.49 - samples/sec: 363.76 - lr: 0.000045 - momentum: 0.000000
2023-10-14 14:47:57,110 epoch 1 - iter 1444/3617 - loss 1.31501097 - time (sec): 417.63 - samples/sec: 364.72 - lr: 0.000060 - momentum: 0.000000
2023-10-14 14:49:44,051 epoch 1 - iter 1805/3617 - loss 1.09620008 - time (sec): 524.57 - samples/sec: 361.95 - lr: 0.000075 - momentum: 0.000000
2023-10-14 14:51:28,614 epoch 1 - iter 2166/3617 - loss 0.93978591 - time (sec): 629.13 - samples/sec: 364.30 - lr: 0.000090 - momentum: 0.000000
2023-10-14 14:53:09,495 epoch 1 - iter 2527/3617 - loss 0.82889421 - time (sec): 730.01 - samples/sec: 366.34 - lr: 0.000105 - momentum: 0.000000
2023-10-14 14:54:50,772 epoch 1 - iter 2888/3617 - loss 0.74534435 - time (sec): 831.29 - samples/sec: 367.53 - lr: 0.000120 - momentum: 0.000000
2023-10-14 14:56:30,263 epoch 1 - iter 3249/3617 - loss 0.67952585 - time (sec): 930.78 - samples/sec: 367.24 - lr: 0.000135 - momentum: 0.000000
2023-10-14 14:58:13,235 epoch 1 - iter 3610/3617 - loss 0.62441070 - time (sec): 1033.75 - samples/sec: 366.94 - lr: 0.000150 - momentum: 0.000000
2023-10-14 14:58:14,910 ----------------------------------------------------------------------------------------------------
2023-10-14 14:58:14,910 EPOCH 1 done: loss 0.6239 - lr: 0.000150
2023-10-14 14:58:53,380 DEV : loss 0.11717528849840164 - f1-score (micro avg)  0.5796
2023-10-14 14:58:53,438 saving best model
2023-10-14 14:58:54,356 ----------------------------------------------------------------------------------------------------
2023-10-14 15:00:36,235 epoch 2 - iter 361/3617 - loss 0.10878939 - time (sec): 101.88 - samples/sec: 370.35 - lr: 0.000148 - momentum: 0.000000
2023-10-14 15:02:20,856 epoch 2 - iter 722/3617 - loss 0.10496323 - time (sec): 206.50 - samples/sec: 369.37 - lr: 0.000147 - momentum: 0.000000
2023-10-14 15:04:10,294 epoch 2 - iter 1083/3617 - loss 0.10512196 - time (sec): 315.94 - samples/sec: 358.08 - lr: 0.000145 - momentum: 0.000000
2023-10-14 15:05:52,218 epoch 2 - iter 1444/3617 - loss 0.10247324 - time (sec): 417.86 - samples/sec: 360.21 - lr: 0.000143 - momentum: 0.000000
2023-10-14 15:07:32,739 epoch 2 - iter 1805/3617 - loss 0.10015258 - time (sec): 518.38 - samples/sec: 362.60 - lr: 0.000142 - momentum: 0.000000
2023-10-14 15:09:12,203 epoch 2 - iter 2166/3617 - loss 0.09832530 - time (sec): 617.84 - samples/sec: 366.60 - lr: 0.000140 - momentum: 0.000000
2023-10-14 15:10:55,993 epoch 2 - iter 2527/3617 - loss 0.09600180 - time (sec): 721.63 - samples/sec: 368.59 - lr: 0.000138 - momentum: 0.000000
2023-10-14 15:12:42,577 epoch 2 - iter 2888/3617 - loss 0.09489153 - time (sec): 828.22 - samples/sec: 367.36 - lr: 0.000137 - momentum: 0.000000
2023-10-14 15:14:25,871 epoch 2 - iter 3249/3617 - loss 0.09188276 - time (sec): 931.51 - samples/sec: 367.52 - lr: 0.000135 - momentum: 0.000000
2023-10-14 15:16:09,934 epoch 2 - iter 3610/3617 - loss 0.09054350 - time (sec): 1035.58 - samples/sec: 366.37 - lr: 0.000133 - momentum: 0.000000
2023-10-14 15:16:11,806 ----------------------------------------------------------------------------------------------------
2023-10-14 15:16:11,807 EPOCH 2 done: loss 0.0909 - lr: 0.000133
2023-10-14 15:16:51,726 DEV : loss 0.11103517562150955 - f1-score (micro avg)  0.6208
2023-10-14 15:16:51,794 saving best model
2023-10-14 15:16:57,345 ----------------------------------------------------------------------------------------------------
2023-10-14 15:18:47,930 epoch 3 - iter 361/3617 - loss 0.06378214 - time (sec): 110.58 - samples/sec: 346.95 - lr: 0.000132 - momentum: 0.000000
2023-10-14 15:20:27,753 epoch 3 - iter 722/3617 - loss 0.06540151 - time (sec): 210.40 - samples/sec: 356.29 - lr: 0.000130 - momentum: 0.000000
2023-10-14 15:22:11,280 epoch 3 - iter 1083/3617 - loss 0.06698159 - time (sec): 313.93 - samples/sec: 359.05 - lr: 0.000128 - momentum: 0.000000
2023-10-14 15:23:52,034 epoch 3 - iter 1444/3617 - loss 0.06526504 - time (sec): 414.68 - samples/sec: 366.94 - lr: 0.000127 - momentum: 0.000000
2023-10-14 15:25:35,189 epoch 3 - iter 1805/3617 - loss 0.06525753 - time (sec): 517.84 - samples/sec: 368.07 - lr: 0.000125 - momentum: 0.000000
2023-10-14 15:27:21,741 epoch 3 - iter 2166/3617 - loss 0.06493734 - time (sec): 624.39 - samples/sec: 367.06 - lr: 0.000123 - momentum: 0.000000
2023-10-14 15:29:02,837 epoch 3 - iter 2527/3617 - loss 0.06477906 - time (sec): 725.49 - samples/sec: 368.41 - lr: 0.000122 - momentum: 0.000000
2023-10-14 15:30:43,338 epoch 3 - iter 2888/3617 - loss 0.06486032 - time (sec): 825.99 - samples/sec: 367.73 - lr: 0.000120 - momentum: 0.000000
2023-10-14 15:32:21,513 epoch 3 - iter 3249/3617 - loss 0.06429360 - time (sec): 924.16 - samples/sec: 369.65 - lr: 0.000118 - momentum: 0.000000
2023-10-14 15:34:00,097 epoch 3 - iter 3610/3617 - loss 0.06473516 - time (sec): 1022.75 - samples/sec: 370.86 - lr: 0.000117 - momentum: 0.000000
2023-10-14 15:34:01,771 ----------------------------------------------------------------------------------------------------
2023-10-14 15:34:01,772 EPOCH 3 done: loss 0.0648 - lr: 0.000117
2023-10-14 15:34:42,878 DEV : loss 0.1630961298942566 - f1-score (micro avg)  0.6158
2023-10-14 15:34:42,948 ----------------------------------------------------------------------------------------------------
2023-10-14 15:36:23,601 epoch 4 - iter 361/3617 - loss 0.04594123 - time (sec): 100.65 - samples/sec: 363.48 - lr: 0.000115 - momentum: 0.000000
2023-10-14 15:38:03,903 epoch 4 - iter 722/3617 - loss 0.04874699 - time (sec): 200.95 - samples/sec: 370.90 - lr: 0.000113 - momentum: 0.000000
2023-10-14 15:39:47,633 epoch 4 - iter 1083/3617 - loss 0.04891474 - time (sec): 304.68 - samples/sec: 372.99 - lr: 0.000112 - momentum: 0.000000
2023-10-14 15:41:28,223 epoch 4 - iter 1444/3617 - loss 0.04690533 - time (sec): 405.27 - samples/sec: 370.54 - lr: 0.000110 - momentum: 0.000000
2023-10-14 15:43:08,244 epoch 4 - iter 1805/3617 - loss 0.04706884 - time (sec): 505.29 - samples/sec: 371.67 - lr: 0.000108 - momentum: 0.000000
2023-10-14 15:44:53,122 epoch 4 - iter 2166/3617 - loss 0.04732382 - time (sec): 610.17 - samples/sec: 371.22 - lr: 0.000107 - momentum: 0.000000
2023-10-14 15:46:34,153 epoch 4 - iter 2527/3617 - loss 0.04755205 - time (sec): 711.20 - samples/sec: 372.43 - lr: 0.000105 - momentum: 0.000000
2023-10-14 15:48:16,775 epoch 4 - iter 2888/3617 - loss 0.04692890 - time (sec): 813.82 - samples/sec: 373.54 - lr: 0.000103 - momentum: 0.000000
2023-10-14 15:49:58,502 epoch 4 - iter 3249/3617 - loss 0.04641577 - time (sec): 915.55 - samples/sec: 372.42 - lr: 0.000102 - momentum: 0.000000
2023-10-14 15:51:37,654 epoch 4 - iter 3610/3617 - loss 0.04580765 - time (sec): 1014.70 - samples/sec: 373.81 - lr: 0.000100 - momentum: 0.000000
2023-10-14 15:51:39,377 ----------------------------------------------------------------------------------------------------
2023-10-14 15:51:39,378 EPOCH 4 done: loss 0.0458 - lr: 0.000100
2023-10-14 15:52:18,475 DEV : loss 0.21207064390182495 - f1-score (micro avg)  0.6575
2023-10-14 15:52:18,532 saving best model
2023-10-14 15:52:21,265 ----------------------------------------------------------------------------------------------------
2023-10-14 15:53:59,089 epoch 5 - iter 361/3617 - loss 0.02339736 - time (sec): 97.82 - samples/sec: 384.30 - lr: 0.000098 - momentum: 0.000000
2023-10-14 15:55:43,726 epoch 5 - iter 722/3617 - loss 0.02553085 - time (sec): 202.46 - samples/sec: 387.78 - lr: 0.000097 - momentum: 0.000000
2023-10-14 15:57:28,602 epoch 5 - iter 1083/3617 - loss 0.02625521 - time (sec): 307.33 - samples/sec: 381.45 - lr: 0.000095 - momentum: 0.000000
2023-10-14 15:59:07,613 epoch 5 - iter 1444/3617 - loss 0.02682998 - time (sec): 406.34 - samples/sec: 378.67 - lr: 0.000093 - momentum: 0.000000
2023-10-14 16:00:54,191 epoch 5 - iter 1805/3617 - loss 0.02777093 - time (sec): 512.92 - samples/sec: 371.65 - lr: 0.000092 - momentum: 0.000000
2023-10-14 16:02:34,896 epoch 5 - iter 2166/3617 - loss 0.02927279 - time (sec): 613.63 - samples/sec: 373.11 - lr: 0.000090 - momentum: 0.000000
2023-10-14 16:04:12,788 epoch 5 - iter 2527/3617 - loss 0.02908364 - time (sec): 711.52 - samples/sec: 374.65 - lr: 0.000088 - momentum: 0.000000
2023-10-14 16:05:50,506 epoch 5 - iter 2888/3617 - loss 0.02954096 - time (sec): 809.24 - samples/sec: 375.84 - lr: 0.000087 - momentum: 0.000000
2023-10-14 16:07:30,269 epoch 5 - iter 3249/3617 - loss 0.03004065 - time (sec): 909.00 - samples/sec: 375.39 - lr: 0.000085 - momentum: 0.000000
2023-10-14 16:09:09,000 epoch 5 - iter 3610/3617 - loss 0.03067994 - time (sec): 1007.73 - samples/sec: 376.30 - lr: 0.000083 - momentum: 0.000000
2023-10-14 16:09:10,704 ----------------------------------------------------------------------------------------------------
2023-10-14 16:09:10,705 EPOCH 5 done: loss 0.0306 - lr: 0.000083
2023-10-14 16:09:49,418 DEV : loss 0.2788721024990082 - f1-score (micro avg)  0.6128
2023-10-14 16:09:49,475 ----------------------------------------------------------------------------------------------------
2023-10-14 16:11:32,473 epoch 6 - iter 361/3617 - loss 0.02077887 - time (sec): 103.00 - samples/sec: 381.48 - lr: 0.000082 - momentum: 0.000000
2023-10-14 16:13:14,265 epoch 6 - iter 722/3617 - loss 0.02070222 - time (sec): 204.79 - samples/sec: 373.48 - lr: 0.000080 - momentum: 0.000000
2023-10-14 16:14:54,315 epoch 6 - iter 1083/3617 - loss 0.01942465 - time (sec): 304.84 - samples/sec: 374.09 - lr: 0.000078 - momentum: 0.000000
2023-10-14 16:16:32,568 epoch 6 - iter 1444/3617 - loss 0.02052837 - time (sec): 403.09 - samples/sec: 375.08 - lr: 0.000077 - momentum: 0.000000
2023-10-14 16:18:15,025 epoch 6 - iter 1805/3617 - loss 0.02128468 - time (sec): 505.55 - samples/sec: 372.79 - lr: 0.000075 - momentum: 0.000000
2023-10-14 16:19:57,182 epoch 6 - iter 2166/3617 - loss 0.02145412 - time (sec): 607.70 - samples/sec: 373.59 - lr: 0.000073 - momentum: 0.000000
2023-10-14 16:21:37,405 epoch 6 - iter 2527/3617 - loss 0.02127559 - time (sec): 707.93 - samples/sec: 373.85 - lr: 0.000072 - momentum: 0.000000
2023-10-14 16:23:17,748 epoch 6 - iter 2888/3617 - loss 0.02174407 - time (sec): 808.27 - samples/sec: 375.50 - lr: 0.000070 - momentum: 0.000000
2023-10-14 16:24:58,379 epoch 6 - iter 3249/3617 - loss 0.02165837 - time (sec): 908.90 - samples/sec: 375.13 - lr: 0.000068 - momentum: 0.000000
2023-10-14 16:26:39,103 epoch 6 - iter 3610/3617 - loss 0.02119253 - time (sec): 1009.63 - samples/sec: 375.80 - lr: 0.000067 - momentum: 0.000000
2023-10-14 16:26:41,074 ----------------------------------------------------------------------------------------------------
2023-10-14 16:26:41,074 EPOCH 6 done: loss 0.0212 - lr: 0.000067
2023-10-14 16:27:20,798 DEV : loss 0.313930869102478 - f1-score (micro avg)  0.6284
2023-10-14 16:27:20,855 ----------------------------------------------------------------------------------------------------
2023-10-14 16:29:06,678 epoch 7 - iter 361/3617 - loss 0.01422485 - time (sec): 105.82 - samples/sec: 383.75 - lr: 0.000065 - momentum: 0.000000
2023-10-14 16:30:54,879 epoch 7 - iter 722/3617 - loss 0.01422789 - time (sec): 214.02 - samples/sec: 363.13 - lr: 0.000063 - momentum: 0.000000
2023-10-14 16:32:43,802 epoch 7 - iter 1083/3617 - loss 0.01393561 - time (sec): 322.94 - samples/sec: 357.57 - lr: 0.000062 - momentum: 0.000000
2023-10-14 16:34:23,506 epoch 7 - iter 1444/3617 - loss 0.01434256 - time (sec): 422.65 - samples/sec: 361.08 - lr: 0.000060 - momentum: 0.000000
2023-10-14 16:36:06,389 epoch 7 - iter 1805/3617 - loss 0.01398391 - time (sec): 525.53 - samples/sec: 361.44 - lr: 0.000058 - momentum: 0.000000
2023-10-14 16:37:52,259 epoch 7 - iter 2166/3617 - loss 0.01422903 - time (sec): 631.40 - samples/sec: 360.88 - lr: 0.000057 - momentum: 0.000000
2023-10-14 16:39:35,485 epoch 7 - iter 2527/3617 - loss 0.01414726 - time (sec): 734.63 - samples/sec: 362.33 - lr: 0.000055 - momentum: 0.000000
2023-10-14 16:41:19,107 epoch 7 - iter 2888/3617 - loss 0.01450497 - time (sec): 838.25 - samples/sec: 364.58 - lr: 0.000053 - momentum: 0.000000
2023-10-14 16:43:02,248 epoch 7 - iter 3249/3617 - loss 0.01550406 - time (sec): 941.39 - samples/sec: 364.18 - lr: 0.000052 - momentum: 0.000000
2023-10-14 16:44:48,987 epoch 7 - iter 3610/3617 - loss 0.01571456 - time (sec): 1048.13 - samples/sec: 361.60 - lr: 0.000050 - momentum: 0.000000
2023-10-14 16:44:51,074 ----------------------------------------------------------------------------------------------------
2023-10-14 16:44:51,074 EPOCH 7 done: loss 0.0158 - lr: 0.000050
2023-10-14 16:45:30,018 DEV : loss 0.3257623016834259 - f1-score (micro avg)  0.6263
2023-10-14 16:45:30,075 ----------------------------------------------------------------------------------------------------
2023-10-14 16:47:09,244 epoch 8 - iter 361/3617 - loss 0.01142318 - time (sec): 99.17 - samples/sec: 387.29 - lr: 0.000048 - momentum: 0.000000
2023-10-14 16:48:57,539 epoch 8 - iter 722/3617 - loss 0.01106006 - time (sec): 207.46 - samples/sec: 374.10 - lr: 0.000047 - momentum: 0.000000
2023-10-14 16:50:47,572 epoch 8 - iter 1083/3617 - loss 0.01148474 - time (sec): 317.49 - samples/sec: 363.91 - lr: 0.000045 - momentum: 0.000000
2023-10-14 16:52:29,277 epoch 8 - iter 1444/3617 - loss 0.01109820 - time (sec): 419.20 - samples/sec: 363.08 - lr: 0.000043 - momentum: 0.000000
2023-10-14 16:54:07,215 epoch 8 - iter 1805/3617 - loss 0.01060742 - time (sec): 517.14 - samples/sec: 368.74 - lr: 0.000042 - momentum: 0.000000
2023-10-14 16:55:45,728 epoch 8 - iter 2166/3617 - loss 0.01013602 - time (sec): 615.65 - samples/sec: 368.66 - lr: 0.000040 - momentum: 0.000000
2023-10-14 16:57:28,600 epoch 8 - iter 2527/3617 - loss 0.01003184 - time (sec): 718.52 - samples/sec: 370.30 - lr: 0.000038 - momentum: 0.000000
2023-10-14 16:59:08,971 epoch 8 - iter 2888/3617 - loss 0.01030870 - time (sec): 818.89 - samples/sec: 370.18 - lr: 0.000037 - momentum: 0.000000
2023-10-14 17:00:48,363 epoch 8 - iter 3249/3617 - loss 0.01013006 - time (sec): 918.29 - samples/sec: 371.85 - lr: 0.000035 - momentum: 0.000000
2023-10-14 17:02:27,074 epoch 8 - iter 3610/3617 - loss 0.00973135 - time (sec): 1017.00 - samples/sec: 372.91 - lr: 0.000033 - momentum: 0.000000
2023-10-14 17:02:28,759 ----------------------------------------------------------------------------------------------------
2023-10-14 17:02:28,759 EPOCH 8 done: loss 0.0097 - lr: 0.000033
2023-10-14 17:03:08,171 DEV : loss 0.3519401252269745 - f1-score (micro avg)  0.6383
2023-10-14 17:03:08,238 ----------------------------------------------------------------------------------------------------
2023-10-14 17:04:56,121 epoch 9 - iter 361/3617 - loss 0.00400351 - time (sec): 107.88 - samples/sec: 337.43 - lr: 0.000032 - momentum: 0.000000
2023-10-14 17:06:44,549 epoch 9 - iter 722/3617 - loss 0.00553294 - time (sec): 216.31 - samples/sec: 337.08 - lr: 0.000030 - momentum: 0.000000
2023-10-14 17:08:26,029 epoch 9 - iter 1083/3617 - loss 0.00718701 - time (sec): 317.79 - samples/sec: 350.01 - lr: 0.000028 - momentum: 0.000000
2023-10-14 17:10:14,915 epoch 9 - iter 1444/3617 - loss 0.00747014 - time (sec): 426.67 - samples/sec: 351.11 - lr: 0.000027 - momentum: 0.000000
2023-10-14 17:12:13,127 epoch 9 - iter 1805/3617 - loss 0.00700743 - time (sec): 544.89 - samples/sec: 346.36 - lr: 0.000025 - momentum: 0.000000
2023-10-14 17:13:56,710 epoch 9 - iter 2166/3617 - loss 0.00753126 - time (sec): 648.47 - samples/sec: 348.52 - lr: 0.000023 - momentum: 0.000000
2023-10-14 17:15:35,725 epoch 9 - iter 2527/3617 - loss 0.00713809 - time (sec): 747.48 - samples/sec: 353.09 - lr: 0.000022 - momentum: 0.000000
2023-10-14 17:17:15,835 epoch 9 - iter 2888/3617 - loss 0.00710439 - time (sec): 847.60 - samples/sec: 358.03 - lr: 0.000020 - momentum: 0.000000
2023-10-14 17:18:53,848 epoch 9 - iter 3249/3617 - loss 0.00691053 - time (sec): 945.61 - samples/sec: 361.20 - lr: 0.000018 - momentum: 0.000000
2023-10-14 17:20:32,410 epoch 9 - iter 3610/3617 - loss 0.00723383 - time (sec): 1044.17 - samples/sec: 363.12 - lr: 0.000017 - momentum: 0.000000
2023-10-14 17:20:34,181 ----------------------------------------------------------------------------------------------------
2023-10-14 17:20:34,181 EPOCH 9 done: loss 0.0072 - lr: 0.000017
2023-10-14 17:21:13,627 DEV : loss 0.37418004870414734 - f1-score (micro avg)  0.6425
2023-10-14 17:21:13,685 ----------------------------------------------------------------------------------------------------
2023-10-14 17:22:51,217 epoch 10 - iter 361/3617 - loss 0.00288085 - time (sec): 97.53 - samples/sec: 383.84 - lr: 0.000015 - momentum: 0.000000
2023-10-14 17:24:32,451 epoch 10 - iter 722/3617 - loss 0.00430136 - time (sec): 198.76 - samples/sec: 381.28 - lr: 0.000013 - momentum: 0.000000
2023-10-14 17:26:18,156 epoch 10 - iter 1083/3617 - loss 0.00516123 - time (sec): 304.47 - samples/sec: 376.22 - lr: 0.000012 - momentum: 0.000000
2023-10-14 17:27:59,531 epoch 10 - iter 1444/3617 - loss 0.00455380 - time (sec): 405.84 - samples/sec: 374.69 - lr: 0.000010 - momentum: 0.000000
2023-10-14 17:29:41,578 epoch 10 - iter 1805/3617 - loss 0.00417121 - time (sec): 507.89 - samples/sec: 373.65 - lr: 0.000008 - momentum: 0.000000
2023-10-14 17:31:24,980 epoch 10 - iter 2166/3617 - loss 0.00427900 - time (sec): 611.29 - samples/sec: 373.25 - lr: 0.000007 - momentum: 0.000000
2023-10-14 17:33:04,407 epoch 10 - iter 2527/3617 - loss 0.00423939 - time (sec): 710.72 - samples/sec: 374.13 - lr: 0.000005 - momentum: 0.000000
2023-10-14 17:34:44,494 epoch 10 - iter 2888/3617 - loss 0.00423096 - time (sec): 810.81 - samples/sec: 376.32 - lr: 0.000003 - momentum: 0.000000
2023-10-14 17:36:23,538 epoch 10 - iter 3249/3617 - loss 0.00456365 - time (sec): 909.85 - samples/sec: 376.25 - lr: 0.000002 - momentum: 0.000000
2023-10-14 17:38:04,514 epoch 10 - iter 3610/3617 - loss 0.00445018 - time (sec): 1010.83 - samples/sec: 375.28 - lr: 0.000000 - momentum: 0.000000
2023-10-14 17:38:06,359 ----------------------------------------------------------------------------------------------------
2023-10-14 17:38:06,359 EPOCH 10 done: loss 0.0045 - lr: 0.000000
2023-10-14 17:38:48,489 DEV : loss 0.383007675409317 - f1-score (micro avg)  0.6403
2023-10-14 17:38:49,482 ----------------------------------------------------------------------------------------------------
2023-10-14 17:38:49,484 Loading model from best epoch ...
2023-10-14 17:38:53,352 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-14 17:39:53,980 
Results:
- F-score (micro) 0.6356
- F-score (macro) 0.4981
- Accuracy 0.4788

By class:
              precision    recall  f1-score   support

         loc     0.6276    0.7699    0.6915       591
        pers     0.5664    0.7171    0.6329       357
         org     0.1757    0.1646    0.1699        79

   micro avg     0.5787    0.7050    0.6356      1027
   macro avg     0.4565    0.5505    0.4981      1027
weighted avg     0.5715    0.7050    0.6310      1027

2023-10-14 17:39:53,980 ----------------------------------------------------------------------------------------------------