|
2023-10-14 19:34:13,664 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:34:13,665 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-14 19:34:13,665 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:34:13,665 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences |
|
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator |
|
2023-10-14 19:34:13,665 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:34:13,665 Train: 14465 sentences |
|
2023-10-14 19:34:13,665 (train_with_dev=False, train_with_test=False) |
|
2023-10-14 19:34:13,665 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:34:13,665 Training Params: |
|
2023-10-14 19:34:13,665 - learning_rate: "3e-05" |
|
2023-10-14 19:34:13,665 - mini_batch_size: "8" |
|
2023-10-14 19:34:13,665 - max_epochs: "10" |
|
2023-10-14 19:34:13,665 - shuffle: "True" |
|
2023-10-14 19:34:13,666 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:34:13,666 Plugins: |
|
2023-10-14 19:34:13,666 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-14 19:34:13,666 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:34:13,666 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-14 19:34:13,666 - metric: "('micro avg', 'f1-score')" |
|
2023-10-14 19:34:13,666 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:34:13,666 Computation: |
|
2023-10-14 19:34:13,666 - compute on device: cuda:0 |
|
2023-10-14 19:34:13,666 - embedding storage: none |
|
2023-10-14 19:34:13,666 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:34:13,666 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1" |
|
2023-10-14 19:34:13,666 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:34:13,666 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:34:24,866 epoch 1 - iter 180/1809 - loss 1.87339049 - time (sec): 11.20 - samples/sec: 3416.59 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-14 19:34:36,164 epoch 1 - iter 360/1809 - loss 1.06251129 - time (sec): 22.50 - samples/sec: 3376.96 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-14 19:34:47,458 epoch 1 - iter 540/1809 - loss 0.77046509 - time (sec): 33.79 - samples/sec: 3359.59 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-14 19:34:58,728 epoch 1 - iter 720/1809 - loss 0.60884730 - time (sec): 45.06 - samples/sec: 3383.44 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-14 19:35:09,821 epoch 1 - iter 900/1809 - loss 0.51478582 - time (sec): 56.15 - samples/sec: 3381.75 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-14 19:35:20,824 epoch 1 - iter 1080/1809 - loss 0.45038851 - time (sec): 67.16 - samples/sec: 3386.76 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-14 19:35:31,910 epoch 1 - iter 1260/1809 - loss 0.40226510 - time (sec): 78.24 - samples/sec: 3377.71 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-14 19:35:43,094 epoch 1 - iter 1440/1809 - loss 0.36377365 - time (sec): 89.43 - samples/sec: 3397.83 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-14 19:35:54,127 epoch 1 - iter 1620/1809 - loss 0.33618725 - time (sec): 100.46 - samples/sec: 3394.46 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-14 19:36:05,245 epoch 1 - iter 1800/1809 - loss 0.31254600 - time (sec): 111.58 - samples/sec: 3390.41 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-14 19:36:05,747 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:36:05,748 EPOCH 1 done: loss 0.3115 - lr: 0.000030 |
|
2023-10-14 19:36:11,319 DEV : loss 0.1074068620800972 - f1-score (micro avg) 0.6227 |
|
2023-10-14 19:36:11,359 saving best model |
|
2023-10-14 19:36:11,761 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:36:23,545 epoch 2 - iter 180/1809 - loss 0.08399045 - time (sec): 11.78 - samples/sec: 3227.45 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-14 19:36:35,128 epoch 2 - iter 360/1809 - loss 0.08189791 - time (sec): 23.37 - samples/sec: 3255.60 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-14 19:36:46,819 epoch 2 - iter 540/1809 - loss 0.08429012 - time (sec): 35.06 - samples/sec: 3269.66 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-14 19:36:57,832 epoch 2 - iter 720/1809 - loss 0.08515928 - time (sec): 46.07 - samples/sec: 3290.94 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-14 19:37:08,723 epoch 2 - iter 900/1809 - loss 0.08559861 - time (sec): 56.96 - samples/sec: 3309.87 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-14 19:37:20,230 epoch 2 - iter 1080/1809 - loss 0.08401278 - time (sec): 68.47 - samples/sec: 3319.10 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-14 19:37:31,469 epoch 2 - iter 1260/1809 - loss 0.08491285 - time (sec): 79.71 - samples/sec: 3330.62 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-14 19:37:42,280 epoch 2 - iter 1440/1809 - loss 0.08263217 - time (sec): 90.52 - samples/sec: 3343.72 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-14 19:37:53,300 epoch 2 - iter 1620/1809 - loss 0.08200069 - time (sec): 101.54 - samples/sec: 3356.23 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-14 19:38:04,107 epoch 2 - iter 1800/1809 - loss 0.08208246 - time (sec): 112.34 - samples/sec: 3365.44 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-14 19:38:04,597 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:38:04,597 EPOCH 2 done: loss 0.0822 - lr: 0.000027 |
|
2023-10-14 19:38:10,890 DEV : loss 0.10114093124866486 - f1-score (micro avg) 0.6484 |
|
2023-10-14 19:38:10,920 saving best model |
|
2023-10-14 19:38:11,500 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:38:22,010 epoch 3 - iter 180/1809 - loss 0.05838759 - time (sec): 10.51 - samples/sec: 3366.01 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-14 19:38:33,197 epoch 3 - iter 360/1809 - loss 0.05874179 - time (sec): 21.70 - samples/sec: 3385.52 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-14 19:38:44,444 epoch 3 - iter 540/1809 - loss 0.05854957 - time (sec): 32.94 - samples/sec: 3374.75 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-14 19:38:55,688 epoch 3 - iter 720/1809 - loss 0.05766306 - time (sec): 44.19 - samples/sec: 3401.61 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-14 19:39:06,774 epoch 3 - iter 900/1809 - loss 0.05644867 - time (sec): 55.27 - samples/sec: 3397.78 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-14 19:39:18,191 epoch 3 - iter 1080/1809 - loss 0.05882154 - time (sec): 66.69 - samples/sec: 3399.07 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-14 19:39:29,277 epoch 3 - iter 1260/1809 - loss 0.05771495 - time (sec): 77.78 - samples/sec: 3409.11 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-14 19:39:40,304 epoch 3 - iter 1440/1809 - loss 0.05784555 - time (sec): 88.80 - samples/sec: 3408.50 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-14 19:39:51,247 epoch 3 - iter 1620/1809 - loss 0.05830648 - time (sec): 99.75 - samples/sec: 3407.59 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-14 19:40:02,524 epoch 3 - iter 1800/1809 - loss 0.05809712 - time (sec): 111.02 - samples/sec: 3408.39 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-14 19:40:03,015 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:40:03,016 EPOCH 3 done: loss 0.0580 - lr: 0.000023 |
|
2023-10-14 19:40:09,518 DEV : loss 0.1736098974943161 - f1-score (micro avg) 0.6375 |
|
2023-10-14 19:40:09,550 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:40:20,934 epoch 4 - iter 180/1809 - loss 0.03691108 - time (sec): 11.38 - samples/sec: 3440.28 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-14 19:40:31,862 epoch 4 - iter 360/1809 - loss 0.04056818 - time (sec): 22.31 - samples/sec: 3422.32 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-14 19:40:42,991 epoch 4 - iter 540/1809 - loss 0.03990955 - time (sec): 33.44 - samples/sec: 3403.48 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-14 19:40:53,744 epoch 4 - iter 720/1809 - loss 0.03930742 - time (sec): 44.19 - samples/sec: 3401.04 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-14 19:41:04,742 epoch 4 - iter 900/1809 - loss 0.03878415 - time (sec): 55.19 - samples/sec: 3419.03 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-14 19:41:15,576 epoch 4 - iter 1080/1809 - loss 0.03901667 - time (sec): 66.02 - samples/sec: 3423.98 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-14 19:41:26,903 epoch 4 - iter 1260/1809 - loss 0.03923070 - time (sec): 77.35 - samples/sec: 3417.32 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-14 19:41:37,923 epoch 4 - iter 1440/1809 - loss 0.03883106 - time (sec): 88.37 - samples/sec: 3425.27 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-14 19:41:48,896 epoch 4 - iter 1620/1809 - loss 0.03987697 - time (sec): 99.34 - samples/sec: 3426.90 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-14 19:42:00,001 epoch 4 - iter 1800/1809 - loss 0.03999749 - time (sec): 110.45 - samples/sec: 3422.64 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-14 19:42:00,575 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:42:00,575 EPOCH 4 done: loss 0.0399 - lr: 0.000020 |
|
2023-10-14 19:42:06,152 DEV : loss 0.23925307393074036 - f1-score (micro avg) 0.6519 |
|
2023-10-14 19:42:06,183 saving best model |
|
2023-10-14 19:42:06,655 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:42:18,792 epoch 5 - iter 180/1809 - loss 0.02627690 - time (sec): 12.13 - samples/sec: 3239.69 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-14 19:42:29,688 epoch 5 - iter 360/1809 - loss 0.02735443 - time (sec): 23.03 - samples/sec: 3336.57 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-14 19:42:40,686 epoch 5 - iter 540/1809 - loss 0.02869184 - time (sec): 34.03 - samples/sec: 3376.77 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-14 19:42:51,517 epoch 5 - iter 720/1809 - loss 0.02921413 - time (sec): 44.86 - samples/sec: 3377.93 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-14 19:43:02,583 epoch 5 - iter 900/1809 - loss 0.02806718 - time (sec): 55.92 - samples/sec: 3405.91 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-14 19:43:13,617 epoch 5 - iter 1080/1809 - loss 0.02805195 - time (sec): 66.96 - samples/sec: 3418.51 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-14 19:43:24,754 epoch 5 - iter 1260/1809 - loss 0.02890258 - time (sec): 78.09 - samples/sec: 3420.80 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-14 19:43:35,724 epoch 5 - iter 1440/1809 - loss 0.02875453 - time (sec): 89.06 - samples/sec: 3414.02 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-14 19:43:46,503 epoch 5 - iter 1620/1809 - loss 0.02827331 - time (sec): 99.84 - samples/sec: 3424.55 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-14 19:43:57,328 epoch 5 - iter 1800/1809 - loss 0.02888219 - time (sec): 110.67 - samples/sec: 3418.00 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-14 19:43:57,818 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:43:57,818 EPOCH 5 done: loss 0.0288 - lr: 0.000017 |
|
2023-10-14 19:44:03,397 DEV : loss 0.3241709768772125 - f1-score (micro avg) 0.6413 |
|
2023-10-14 19:44:03,430 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:44:14,543 epoch 6 - iter 180/1809 - loss 0.01726600 - time (sec): 11.11 - samples/sec: 3401.18 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-14 19:44:25,391 epoch 6 - iter 360/1809 - loss 0.02130409 - time (sec): 21.96 - samples/sec: 3418.16 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-14 19:44:36,249 epoch 6 - iter 540/1809 - loss 0.01945479 - time (sec): 32.82 - samples/sec: 3401.46 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-14 19:44:47,162 epoch 6 - iter 720/1809 - loss 0.01798882 - time (sec): 43.73 - samples/sec: 3412.71 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-14 19:44:58,270 epoch 6 - iter 900/1809 - loss 0.01805154 - time (sec): 54.84 - samples/sec: 3425.09 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-14 19:45:10,066 epoch 6 - iter 1080/1809 - loss 0.01928162 - time (sec): 66.64 - samples/sec: 3389.98 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-14 19:45:21,094 epoch 6 - iter 1260/1809 - loss 0.01948046 - time (sec): 77.66 - samples/sec: 3392.34 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-14 19:45:32,425 epoch 6 - iter 1440/1809 - loss 0.01954946 - time (sec): 88.99 - samples/sec: 3404.88 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-14 19:45:43,426 epoch 6 - iter 1620/1809 - loss 0.01979056 - time (sec): 100.00 - samples/sec: 3398.79 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-14 19:45:54,379 epoch 6 - iter 1800/1809 - loss 0.01952738 - time (sec): 110.95 - samples/sec: 3408.26 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-14 19:45:54,891 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:45:54,891 EPOCH 6 done: loss 0.0195 - lr: 0.000013 |
|
2023-10-14 19:46:00,459 DEV : loss 0.32730063796043396 - f1-score (micro avg) 0.6469 |
|
2023-10-14 19:46:00,489 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:46:11,510 epoch 7 - iter 180/1809 - loss 0.01375259 - time (sec): 11.02 - samples/sec: 3507.41 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-14 19:46:22,844 epoch 7 - iter 360/1809 - loss 0.01337537 - time (sec): 22.35 - samples/sec: 3435.97 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-14 19:46:33,788 epoch 7 - iter 540/1809 - loss 0.01292578 - time (sec): 33.30 - samples/sec: 3437.99 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-14 19:46:44,656 epoch 7 - iter 720/1809 - loss 0.01256781 - time (sec): 44.17 - samples/sec: 3454.85 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-14 19:46:55,743 epoch 7 - iter 900/1809 - loss 0.01292955 - time (sec): 55.25 - samples/sec: 3441.61 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-14 19:47:06,590 epoch 7 - iter 1080/1809 - loss 0.01366189 - time (sec): 66.10 - samples/sec: 3444.85 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-14 19:47:17,485 epoch 7 - iter 1260/1809 - loss 0.01294217 - time (sec): 76.99 - samples/sec: 3446.87 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-14 19:47:28,684 epoch 7 - iter 1440/1809 - loss 0.01355941 - time (sec): 88.19 - samples/sec: 3438.84 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-14 19:47:39,588 epoch 7 - iter 1620/1809 - loss 0.01404239 - time (sec): 99.10 - samples/sec: 3436.68 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-14 19:47:50,401 epoch 7 - iter 1800/1809 - loss 0.01415717 - time (sec): 109.91 - samples/sec: 3440.60 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-14 19:47:50,880 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:47:50,881 EPOCH 7 done: loss 0.0142 - lr: 0.000010 |
|
2023-10-14 19:47:57,159 DEV : loss 0.34697893261909485 - f1-score (micro avg) 0.6535 |
|
2023-10-14 19:47:57,189 saving best model |
|
2023-10-14 19:47:57,664 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:48:08,704 epoch 8 - iter 180/1809 - loss 0.00926758 - time (sec): 11.04 - samples/sec: 3339.97 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-14 19:48:19,824 epoch 8 - iter 360/1809 - loss 0.01045925 - time (sec): 22.16 - samples/sec: 3378.57 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-14 19:48:30,922 epoch 8 - iter 540/1809 - loss 0.01079154 - time (sec): 33.25 - samples/sec: 3412.90 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-14 19:48:42,001 epoch 8 - iter 720/1809 - loss 0.01092862 - time (sec): 44.33 - samples/sec: 3412.23 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-14 19:48:52,717 epoch 8 - iter 900/1809 - loss 0.01101834 - time (sec): 55.05 - samples/sec: 3423.63 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-14 19:49:03,432 epoch 8 - iter 1080/1809 - loss 0.01138095 - time (sec): 65.76 - samples/sec: 3406.13 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-14 19:49:14,961 epoch 8 - iter 1260/1809 - loss 0.01254336 - time (sec): 77.29 - samples/sec: 3406.95 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-14 19:49:25,998 epoch 8 - iter 1440/1809 - loss 0.01162416 - time (sec): 88.33 - samples/sec: 3404.01 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-14 19:49:37,131 epoch 8 - iter 1620/1809 - loss 0.01113848 - time (sec): 99.46 - samples/sec: 3411.17 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-14 19:49:48,424 epoch 8 - iter 1800/1809 - loss 0.01102466 - time (sec): 110.76 - samples/sec: 3410.53 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-14 19:49:49,050 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:49:49,050 EPOCH 8 done: loss 0.0110 - lr: 0.000007 |
|
2023-10-14 19:49:55,515 DEV : loss 0.3827722668647766 - f1-score (micro avg) 0.6585 |
|
2023-10-14 19:49:55,558 saving best model |
|
2023-10-14 19:49:56,097 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:50:08,129 epoch 9 - iter 180/1809 - loss 0.00799016 - time (sec): 12.03 - samples/sec: 3140.21 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-14 19:50:19,453 epoch 9 - iter 360/1809 - loss 0.00806244 - time (sec): 23.35 - samples/sec: 3293.32 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-14 19:50:30,505 epoch 9 - iter 540/1809 - loss 0.00701912 - time (sec): 34.41 - samples/sec: 3346.83 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-14 19:50:41,490 epoch 9 - iter 720/1809 - loss 0.00725727 - time (sec): 45.39 - samples/sec: 3343.45 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-14 19:50:52,341 epoch 9 - iter 900/1809 - loss 0.00639063 - time (sec): 56.24 - samples/sec: 3362.52 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-14 19:51:03,204 epoch 9 - iter 1080/1809 - loss 0.00665483 - time (sec): 67.11 - samples/sec: 3375.42 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-14 19:51:14,164 epoch 9 - iter 1260/1809 - loss 0.00668153 - time (sec): 78.06 - samples/sec: 3373.14 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-14 19:51:25,278 epoch 9 - iter 1440/1809 - loss 0.00657144 - time (sec): 89.18 - samples/sec: 3373.75 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-14 19:51:36,498 epoch 9 - iter 1620/1809 - loss 0.00673205 - time (sec): 100.40 - samples/sec: 3381.01 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-14 19:51:47,624 epoch 9 - iter 1800/1809 - loss 0.00652186 - time (sec): 111.52 - samples/sec: 3393.26 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-14 19:51:48,165 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:51:48,166 EPOCH 9 done: loss 0.0065 - lr: 0.000003 |
|
2023-10-14 19:51:54,459 DEV : loss 0.40861621499061584 - f1-score (micro avg) 0.6496 |
|
2023-10-14 19:51:54,491 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:52:05,476 epoch 10 - iter 180/1809 - loss 0.00347599 - time (sec): 10.98 - samples/sec: 3484.27 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-14 19:52:16,545 epoch 10 - iter 360/1809 - loss 0.00318849 - time (sec): 22.05 - samples/sec: 3488.76 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-14 19:52:27,552 epoch 10 - iter 540/1809 - loss 0.00415644 - time (sec): 33.06 - samples/sec: 3444.26 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-14 19:52:38,746 epoch 10 - iter 720/1809 - loss 0.00401066 - time (sec): 44.25 - samples/sec: 3429.51 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-14 19:52:50,230 epoch 10 - iter 900/1809 - loss 0.00421623 - time (sec): 55.74 - samples/sec: 3410.38 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-14 19:53:01,536 epoch 10 - iter 1080/1809 - loss 0.00490989 - time (sec): 67.04 - samples/sec: 3402.50 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-14 19:53:12,373 epoch 10 - iter 1260/1809 - loss 0.00503163 - time (sec): 77.88 - samples/sec: 3395.85 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-14 19:53:23,229 epoch 10 - iter 1440/1809 - loss 0.00494148 - time (sec): 88.74 - samples/sec: 3381.82 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-14 19:53:34,347 epoch 10 - iter 1620/1809 - loss 0.00474586 - time (sec): 99.86 - samples/sec: 3392.70 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-14 19:53:45,922 epoch 10 - iter 1800/1809 - loss 0.00460738 - time (sec): 111.43 - samples/sec: 3394.00 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-14 19:53:46,432 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:53:46,432 EPOCH 10 done: loss 0.0046 - lr: 0.000000 |
|
2023-10-14 19:53:52,077 DEV : loss 0.40256527066230774 - f1-score (micro avg) 0.6524 |
|
2023-10-14 19:53:52,610 ---------------------------------------------------------------------------------------------------- |
|
2023-10-14 19:53:52,611 Loading model from best epoch ... |
|
2023-10-14 19:53:55,979 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org |
|
2023-10-14 19:54:03,479 |
|
Results: |
|
- F-score (micro) 0.6649 |
|
- F-score (macro) 0.5416 |
|
- Accuracy 0.5127 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.6498 0.8037 0.7186 591 |
|
pers 0.5723 0.7647 0.6547 357 |
|
org 0.2639 0.2405 0.2517 79 |
|
|
|
micro avg 0.5992 0.7468 0.6649 1027 |
|
macro avg 0.4953 0.6030 0.5416 1027 |
|
weighted avg 0.5932 0.7468 0.6605 1027 |
|
|
|
2023-10-14 19:54:03,479 ---------------------------------------------------------------------------------------------------- |
|
|