stefan-it's picture
Upload folder using huggingface_hub
a9bf069
2023-10-14 19:34:13,664 ----------------------------------------------------------------------------------------------------
2023-10-14 19:34:13,665 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(32001, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=13, bias=True)
(loss_function): CrossEntropyLoss()
)"
2023-10-14 19:34:13,665 ----------------------------------------------------------------------------------------------------
2023-10-14 19:34:13,665 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-14 19:34:13,665 ----------------------------------------------------------------------------------------------------
2023-10-14 19:34:13,665 Train: 14465 sentences
2023-10-14 19:34:13,665 (train_with_dev=False, train_with_test=False)
2023-10-14 19:34:13,665 ----------------------------------------------------------------------------------------------------
2023-10-14 19:34:13,665 Training Params:
2023-10-14 19:34:13,665 - learning_rate: "3e-05"
2023-10-14 19:34:13,665 - mini_batch_size: "8"
2023-10-14 19:34:13,665 - max_epochs: "10"
2023-10-14 19:34:13,665 - shuffle: "True"
2023-10-14 19:34:13,666 ----------------------------------------------------------------------------------------------------
2023-10-14 19:34:13,666 Plugins:
2023-10-14 19:34:13,666 - LinearScheduler | warmup_fraction: '0.1'
2023-10-14 19:34:13,666 ----------------------------------------------------------------------------------------------------
2023-10-14 19:34:13,666 Final evaluation on model from best epoch (best-model.pt)
2023-10-14 19:34:13,666 - metric: "('micro avg', 'f1-score')"
2023-10-14 19:34:13,666 ----------------------------------------------------------------------------------------------------
2023-10-14 19:34:13,666 Computation:
2023-10-14 19:34:13,666 - compute on device: cuda:0
2023-10-14 19:34:13,666 - embedding storage: none
2023-10-14 19:34:13,666 ----------------------------------------------------------------------------------------------------
2023-10-14 19:34:13,666 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-14 19:34:13,666 ----------------------------------------------------------------------------------------------------
2023-10-14 19:34:13,666 ----------------------------------------------------------------------------------------------------
2023-10-14 19:34:24,866 epoch 1 - iter 180/1809 - loss 1.87339049 - time (sec): 11.20 - samples/sec: 3416.59 - lr: 0.000003 - momentum: 0.000000
2023-10-14 19:34:36,164 epoch 1 - iter 360/1809 - loss 1.06251129 - time (sec): 22.50 - samples/sec: 3376.96 - lr: 0.000006 - momentum: 0.000000
2023-10-14 19:34:47,458 epoch 1 - iter 540/1809 - loss 0.77046509 - time (sec): 33.79 - samples/sec: 3359.59 - lr: 0.000009 - momentum: 0.000000
2023-10-14 19:34:58,728 epoch 1 - iter 720/1809 - loss 0.60884730 - time (sec): 45.06 - samples/sec: 3383.44 - lr: 0.000012 - momentum: 0.000000
2023-10-14 19:35:09,821 epoch 1 - iter 900/1809 - loss 0.51478582 - time (sec): 56.15 - samples/sec: 3381.75 - lr: 0.000015 - momentum: 0.000000
2023-10-14 19:35:20,824 epoch 1 - iter 1080/1809 - loss 0.45038851 - time (sec): 67.16 - samples/sec: 3386.76 - lr: 0.000018 - momentum: 0.000000
2023-10-14 19:35:31,910 epoch 1 - iter 1260/1809 - loss 0.40226510 - time (sec): 78.24 - samples/sec: 3377.71 - lr: 0.000021 - momentum: 0.000000
2023-10-14 19:35:43,094 epoch 1 - iter 1440/1809 - loss 0.36377365 - time (sec): 89.43 - samples/sec: 3397.83 - lr: 0.000024 - momentum: 0.000000
2023-10-14 19:35:54,127 epoch 1 - iter 1620/1809 - loss 0.33618725 - time (sec): 100.46 - samples/sec: 3394.46 - lr: 0.000027 - momentum: 0.000000
2023-10-14 19:36:05,245 epoch 1 - iter 1800/1809 - loss 0.31254600 - time (sec): 111.58 - samples/sec: 3390.41 - lr: 0.000030 - momentum: 0.000000
2023-10-14 19:36:05,747 ----------------------------------------------------------------------------------------------------
2023-10-14 19:36:05,748 EPOCH 1 done: loss 0.3115 - lr: 0.000030
2023-10-14 19:36:11,319 DEV : loss 0.1074068620800972 - f1-score (micro avg) 0.6227
2023-10-14 19:36:11,359 saving best model
2023-10-14 19:36:11,761 ----------------------------------------------------------------------------------------------------
2023-10-14 19:36:23,545 epoch 2 - iter 180/1809 - loss 0.08399045 - time (sec): 11.78 - samples/sec: 3227.45 - lr: 0.000030 - momentum: 0.000000
2023-10-14 19:36:35,128 epoch 2 - iter 360/1809 - loss 0.08189791 - time (sec): 23.37 - samples/sec: 3255.60 - lr: 0.000029 - momentum: 0.000000
2023-10-14 19:36:46,819 epoch 2 - iter 540/1809 - loss 0.08429012 - time (sec): 35.06 - samples/sec: 3269.66 - lr: 0.000029 - momentum: 0.000000
2023-10-14 19:36:57,832 epoch 2 - iter 720/1809 - loss 0.08515928 - time (sec): 46.07 - samples/sec: 3290.94 - lr: 0.000029 - momentum: 0.000000
2023-10-14 19:37:08,723 epoch 2 - iter 900/1809 - loss 0.08559861 - time (sec): 56.96 - samples/sec: 3309.87 - lr: 0.000028 - momentum: 0.000000
2023-10-14 19:37:20,230 epoch 2 - iter 1080/1809 - loss 0.08401278 - time (sec): 68.47 - samples/sec: 3319.10 - lr: 0.000028 - momentum: 0.000000
2023-10-14 19:37:31,469 epoch 2 - iter 1260/1809 - loss 0.08491285 - time (sec): 79.71 - samples/sec: 3330.62 - lr: 0.000028 - momentum: 0.000000
2023-10-14 19:37:42,280 epoch 2 - iter 1440/1809 - loss 0.08263217 - time (sec): 90.52 - samples/sec: 3343.72 - lr: 0.000027 - momentum: 0.000000
2023-10-14 19:37:53,300 epoch 2 - iter 1620/1809 - loss 0.08200069 - time (sec): 101.54 - samples/sec: 3356.23 - lr: 0.000027 - momentum: 0.000000
2023-10-14 19:38:04,107 epoch 2 - iter 1800/1809 - loss 0.08208246 - time (sec): 112.34 - samples/sec: 3365.44 - lr: 0.000027 - momentum: 0.000000
2023-10-14 19:38:04,597 ----------------------------------------------------------------------------------------------------
2023-10-14 19:38:04,597 EPOCH 2 done: loss 0.0822 - lr: 0.000027
2023-10-14 19:38:10,890 DEV : loss 0.10114093124866486 - f1-score (micro avg) 0.6484
2023-10-14 19:38:10,920 saving best model
2023-10-14 19:38:11,500 ----------------------------------------------------------------------------------------------------
2023-10-14 19:38:22,010 epoch 3 - iter 180/1809 - loss 0.05838759 - time (sec): 10.51 - samples/sec: 3366.01 - lr: 0.000026 - momentum: 0.000000
2023-10-14 19:38:33,197 epoch 3 - iter 360/1809 - loss 0.05874179 - time (sec): 21.70 - samples/sec: 3385.52 - lr: 0.000026 - momentum: 0.000000
2023-10-14 19:38:44,444 epoch 3 - iter 540/1809 - loss 0.05854957 - time (sec): 32.94 - samples/sec: 3374.75 - lr: 0.000026 - momentum: 0.000000
2023-10-14 19:38:55,688 epoch 3 - iter 720/1809 - loss 0.05766306 - time (sec): 44.19 - samples/sec: 3401.61 - lr: 0.000025 - momentum: 0.000000
2023-10-14 19:39:06,774 epoch 3 - iter 900/1809 - loss 0.05644867 - time (sec): 55.27 - samples/sec: 3397.78 - lr: 0.000025 - momentum: 0.000000
2023-10-14 19:39:18,191 epoch 3 - iter 1080/1809 - loss 0.05882154 - time (sec): 66.69 - samples/sec: 3399.07 - lr: 0.000025 - momentum: 0.000000
2023-10-14 19:39:29,277 epoch 3 - iter 1260/1809 - loss 0.05771495 - time (sec): 77.78 - samples/sec: 3409.11 - lr: 0.000024 - momentum: 0.000000
2023-10-14 19:39:40,304 epoch 3 - iter 1440/1809 - loss 0.05784555 - time (sec): 88.80 - samples/sec: 3408.50 - lr: 0.000024 - momentum: 0.000000
2023-10-14 19:39:51,247 epoch 3 - iter 1620/1809 - loss 0.05830648 - time (sec): 99.75 - samples/sec: 3407.59 - lr: 0.000024 - momentum: 0.000000
2023-10-14 19:40:02,524 epoch 3 - iter 1800/1809 - loss 0.05809712 - time (sec): 111.02 - samples/sec: 3408.39 - lr: 0.000023 - momentum: 0.000000
2023-10-14 19:40:03,015 ----------------------------------------------------------------------------------------------------
2023-10-14 19:40:03,016 EPOCH 3 done: loss 0.0580 - lr: 0.000023
2023-10-14 19:40:09,518 DEV : loss 0.1736098974943161 - f1-score (micro avg) 0.6375
2023-10-14 19:40:09,550 ----------------------------------------------------------------------------------------------------
2023-10-14 19:40:20,934 epoch 4 - iter 180/1809 - loss 0.03691108 - time (sec): 11.38 - samples/sec: 3440.28 - lr: 0.000023 - momentum: 0.000000
2023-10-14 19:40:31,862 epoch 4 - iter 360/1809 - loss 0.04056818 - time (sec): 22.31 - samples/sec: 3422.32 - lr: 0.000023 - momentum: 0.000000
2023-10-14 19:40:42,991 epoch 4 - iter 540/1809 - loss 0.03990955 - time (sec): 33.44 - samples/sec: 3403.48 - lr: 0.000022 - momentum: 0.000000
2023-10-14 19:40:53,744 epoch 4 - iter 720/1809 - loss 0.03930742 - time (sec): 44.19 - samples/sec: 3401.04 - lr: 0.000022 - momentum: 0.000000
2023-10-14 19:41:04,742 epoch 4 - iter 900/1809 - loss 0.03878415 - time (sec): 55.19 - samples/sec: 3419.03 - lr: 0.000022 - momentum: 0.000000
2023-10-14 19:41:15,576 epoch 4 - iter 1080/1809 - loss 0.03901667 - time (sec): 66.02 - samples/sec: 3423.98 - lr: 0.000021 - momentum: 0.000000
2023-10-14 19:41:26,903 epoch 4 - iter 1260/1809 - loss 0.03923070 - time (sec): 77.35 - samples/sec: 3417.32 - lr: 0.000021 - momentum: 0.000000
2023-10-14 19:41:37,923 epoch 4 - iter 1440/1809 - loss 0.03883106 - time (sec): 88.37 - samples/sec: 3425.27 - lr: 0.000021 - momentum: 0.000000
2023-10-14 19:41:48,896 epoch 4 - iter 1620/1809 - loss 0.03987697 - time (sec): 99.34 - samples/sec: 3426.90 - lr: 0.000020 - momentum: 0.000000
2023-10-14 19:42:00,001 epoch 4 - iter 1800/1809 - loss 0.03999749 - time (sec): 110.45 - samples/sec: 3422.64 - lr: 0.000020 - momentum: 0.000000
2023-10-14 19:42:00,575 ----------------------------------------------------------------------------------------------------
2023-10-14 19:42:00,575 EPOCH 4 done: loss 0.0399 - lr: 0.000020
2023-10-14 19:42:06,152 DEV : loss 0.23925307393074036 - f1-score (micro avg) 0.6519
2023-10-14 19:42:06,183 saving best model
2023-10-14 19:42:06,655 ----------------------------------------------------------------------------------------------------
2023-10-14 19:42:18,792 epoch 5 - iter 180/1809 - loss 0.02627690 - time (sec): 12.13 - samples/sec: 3239.69 - lr: 0.000020 - momentum: 0.000000
2023-10-14 19:42:29,688 epoch 5 - iter 360/1809 - loss 0.02735443 - time (sec): 23.03 - samples/sec: 3336.57 - lr: 0.000019 - momentum: 0.000000
2023-10-14 19:42:40,686 epoch 5 - iter 540/1809 - loss 0.02869184 - time (sec): 34.03 - samples/sec: 3376.77 - lr: 0.000019 - momentum: 0.000000
2023-10-14 19:42:51,517 epoch 5 - iter 720/1809 - loss 0.02921413 - time (sec): 44.86 - samples/sec: 3377.93 - lr: 0.000019 - momentum: 0.000000
2023-10-14 19:43:02,583 epoch 5 - iter 900/1809 - loss 0.02806718 - time (sec): 55.92 - samples/sec: 3405.91 - lr: 0.000018 - momentum: 0.000000
2023-10-14 19:43:13,617 epoch 5 - iter 1080/1809 - loss 0.02805195 - time (sec): 66.96 - samples/sec: 3418.51 - lr: 0.000018 - momentum: 0.000000
2023-10-14 19:43:24,754 epoch 5 - iter 1260/1809 - loss 0.02890258 - time (sec): 78.09 - samples/sec: 3420.80 - lr: 0.000018 - momentum: 0.000000
2023-10-14 19:43:35,724 epoch 5 - iter 1440/1809 - loss 0.02875453 - time (sec): 89.06 - samples/sec: 3414.02 - lr: 0.000017 - momentum: 0.000000
2023-10-14 19:43:46,503 epoch 5 - iter 1620/1809 - loss 0.02827331 - time (sec): 99.84 - samples/sec: 3424.55 - lr: 0.000017 - momentum: 0.000000
2023-10-14 19:43:57,328 epoch 5 - iter 1800/1809 - loss 0.02888219 - time (sec): 110.67 - samples/sec: 3418.00 - lr: 0.000017 - momentum: 0.000000
2023-10-14 19:43:57,818 ----------------------------------------------------------------------------------------------------
2023-10-14 19:43:57,818 EPOCH 5 done: loss 0.0288 - lr: 0.000017
2023-10-14 19:44:03,397 DEV : loss 0.3241709768772125 - f1-score (micro avg) 0.6413
2023-10-14 19:44:03,430 ----------------------------------------------------------------------------------------------------
2023-10-14 19:44:14,543 epoch 6 - iter 180/1809 - loss 0.01726600 - time (sec): 11.11 - samples/sec: 3401.18 - lr: 0.000016 - momentum: 0.000000
2023-10-14 19:44:25,391 epoch 6 - iter 360/1809 - loss 0.02130409 - time (sec): 21.96 - samples/sec: 3418.16 - lr: 0.000016 - momentum: 0.000000
2023-10-14 19:44:36,249 epoch 6 - iter 540/1809 - loss 0.01945479 - time (sec): 32.82 - samples/sec: 3401.46 - lr: 0.000016 - momentum: 0.000000
2023-10-14 19:44:47,162 epoch 6 - iter 720/1809 - loss 0.01798882 - time (sec): 43.73 - samples/sec: 3412.71 - lr: 0.000015 - momentum: 0.000000
2023-10-14 19:44:58,270 epoch 6 - iter 900/1809 - loss 0.01805154 - time (sec): 54.84 - samples/sec: 3425.09 - lr: 0.000015 - momentum: 0.000000
2023-10-14 19:45:10,066 epoch 6 - iter 1080/1809 - loss 0.01928162 - time (sec): 66.64 - samples/sec: 3389.98 - lr: 0.000015 - momentum: 0.000000
2023-10-14 19:45:21,094 epoch 6 - iter 1260/1809 - loss 0.01948046 - time (sec): 77.66 - samples/sec: 3392.34 - lr: 0.000014 - momentum: 0.000000
2023-10-14 19:45:32,425 epoch 6 - iter 1440/1809 - loss 0.01954946 - time (sec): 88.99 - samples/sec: 3404.88 - lr: 0.000014 - momentum: 0.000000
2023-10-14 19:45:43,426 epoch 6 - iter 1620/1809 - loss 0.01979056 - time (sec): 100.00 - samples/sec: 3398.79 - lr: 0.000014 - momentum: 0.000000
2023-10-14 19:45:54,379 epoch 6 - iter 1800/1809 - loss 0.01952738 - time (sec): 110.95 - samples/sec: 3408.26 - lr: 0.000013 - momentum: 0.000000
2023-10-14 19:45:54,891 ----------------------------------------------------------------------------------------------------
2023-10-14 19:45:54,891 EPOCH 6 done: loss 0.0195 - lr: 0.000013
2023-10-14 19:46:00,459 DEV : loss 0.32730063796043396 - f1-score (micro avg) 0.6469
2023-10-14 19:46:00,489 ----------------------------------------------------------------------------------------------------
2023-10-14 19:46:11,510 epoch 7 - iter 180/1809 - loss 0.01375259 - time (sec): 11.02 - samples/sec: 3507.41 - lr: 0.000013 - momentum: 0.000000
2023-10-14 19:46:22,844 epoch 7 - iter 360/1809 - loss 0.01337537 - time (sec): 22.35 - samples/sec: 3435.97 - lr: 0.000013 - momentum: 0.000000
2023-10-14 19:46:33,788 epoch 7 - iter 540/1809 - loss 0.01292578 - time (sec): 33.30 - samples/sec: 3437.99 - lr: 0.000012 - momentum: 0.000000
2023-10-14 19:46:44,656 epoch 7 - iter 720/1809 - loss 0.01256781 - time (sec): 44.17 - samples/sec: 3454.85 - lr: 0.000012 - momentum: 0.000000
2023-10-14 19:46:55,743 epoch 7 - iter 900/1809 - loss 0.01292955 - time (sec): 55.25 - samples/sec: 3441.61 - lr: 0.000012 - momentum: 0.000000
2023-10-14 19:47:06,590 epoch 7 - iter 1080/1809 - loss 0.01366189 - time (sec): 66.10 - samples/sec: 3444.85 - lr: 0.000011 - momentum: 0.000000
2023-10-14 19:47:17,485 epoch 7 - iter 1260/1809 - loss 0.01294217 - time (sec): 76.99 - samples/sec: 3446.87 - lr: 0.000011 - momentum: 0.000000
2023-10-14 19:47:28,684 epoch 7 - iter 1440/1809 - loss 0.01355941 - time (sec): 88.19 - samples/sec: 3438.84 - lr: 0.000011 - momentum: 0.000000
2023-10-14 19:47:39,588 epoch 7 - iter 1620/1809 - loss 0.01404239 - time (sec): 99.10 - samples/sec: 3436.68 - lr: 0.000010 - momentum: 0.000000
2023-10-14 19:47:50,401 epoch 7 - iter 1800/1809 - loss 0.01415717 - time (sec): 109.91 - samples/sec: 3440.60 - lr: 0.000010 - momentum: 0.000000
2023-10-14 19:47:50,880 ----------------------------------------------------------------------------------------------------
2023-10-14 19:47:50,881 EPOCH 7 done: loss 0.0142 - lr: 0.000010
2023-10-14 19:47:57,159 DEV : loss 0.34697893261909485 - f1-score (micro avg) 0.6535
2023-10-14 19:47:57,189 saving best model
2023-10-14 19:47:57,664 ----------------------------------------------------------------------------------------------------
2023-10-14 19:48:08,704 epoch 8 - iter 180/1809 - loss 0.00926758 - time (sec): 11.04 - samples/sec: 3339.97 - lr: 0.000010 - momentum: 0.000000
2023-10-14 19:48:19,824 epoch 8 - iter 360/1809 - loss 0.01045925 - time (sec): 22.16 - samples/sec: 3378.57 - lr: 0.000009 - momentum: 0.000000
2023-10-14 19:48:30,922 epoch 8 - iter 540/1809 - loss 0.01079154 - time (sec): 33.25 - samples/sec: 3412.90 - lr: 0.000009 - momentum: 0.000000
2023-10-14 19:48:42,001 epoch 8 - iter 720/1809 - loss 0.01092862 - time (sec): 44.33 - samples/sec: 3412.23 - lr: 0.000009 - momentum: 0.000000
2023-10-14 19:48:52,717 epoch 8 - iter 900/1809 - loss 0.01101834 - time (sec): 55.05 - samples/sec: 3423.63 - lr: 0.000008 - momentum: 0.000000
2023-10-14 19:49:03,432 epoch 8 - iter 1080/1809 - loss 0.01138095 - time (sec): 65.76 - samples/sec: 3406.13 - lr: 0.000008 - momentum: 0.000000
2023-10-14 19:49:14,961 epoch 8 - iter 1260/1809 - loss 0.01254336 - time (sec): 77.29 - samples/sec: 3406.95 - lr: 0.000008 - momentum: 0.000000
2023-10-14 19:49:25,998 epoch 8 - iter 1440/1809 - loss 0.01162416 - time (sec): 88.33 - samples/sec: 3404.01 - lr: 0.000007 - momentum: 0.000000
2023-10-14 19:49:37,131 epoch 8 - iter 1620/1809 - loss 0.01113848 - time (sec): 99.46 - samples/sec: 3411.17 - lr: 0.000007 - momentum: 0.000000
2023-10-14 19:49:48,424 epoch 8 - iter 1800/1809 - loss 0.01102466 - time (sec): 110.76 - samples/sec: 3410.53 - lr: 0.000007 - momentum: 0.000000
2023-10-14 19:49:49,050 ----------------------------------------------------------------------------------------------------
2023-10-14 19:49:49,050 EPOCH 8 done: loss 0.0110 - lr: 0.000007
2023-10-14 19:49:55,515 DEV : loss 0.3827722668647766 - f1-score (micro avg) 0.6585
2023-10-14 19:49:55,558 saving best model
2023-10-14 19:49:56,097 ----------------------------------------------------------------------------------------------------
2023-10-14 19:50:08,129 epoch 9 - iter 180/1809 - loss 0.00799016 - time (sec): 12.03 - samples/sec: 3140.21 - lr: 0.000006 - momentum: 0.000000
2023-10-14 19:50:19,453 epoch 9 - iter 360/1809 - loss 0.00806244 - time (sec): 23.35 - samples/sec: 3293.32 - lr: 0.000006 - momentum: 0.000000
2023-10-14 19:50:30,505 epoch 9 - iter 540/1809 - loss 0.00701912 - time (sec): 34.41 - samples/sec: 3346.83 - lr: 0.000006 - momentum: 0.000000
2023-10-14 19:50:41,490 epoch 9 - iter 720/1809 - loss 0.00725727 - time (sec): 45.39 - samples/sec: 3343.45 - lr: 0.000005 - momentum: 0.000000
2023-10-14 19:50:52,341 epoch 9 - iter 900/1809 - loss 0.00639063 - time (sec): 56.24 - samples/sec: 3362.52 - lr: 0.000005 - momentum: 0.000000
2023-10-14 19:51:03,204 epoch 9 - iter 1080/1809 - loss 0.00665483 - time (sec): 67.11 - samples/sec: 3375.42 - lr: 0.000005 - momentum: 0.000000
2023-10-14 19:51:14,164 epoch 9 - iter 1260/1809 - loss 0.00668153 - time (sec): 78.06 - samples/sec: 3373.14 - lr: 0.000004 - momentum: 0.000000
2023-10-14 19:51:25,278 epoch 9 - iter 1440/1809 - loss 0.00657144 - time (sec): 89.18 - samples/sec: 3373.75 - lr: 0.000004 - momentum: 0.000000
2023-10-14 19:51:36,498 epoch 9 - iter 1620/1809 - loss 0.00673205 - time (sec): 100.40 - samples/sec: 3381.01 - lr: 0.000004 - momentum: 0.000000
2023-10-14 19:51:47,624 epoch 9 - iter 1800/1809 - loss 0.00652186 - time (sec): 111.52 - samples/sec: 3393.26 - lr: 0.000003 - momentum: 0.000000
2023-10-14 19:51:48,165 ----------------------------------------------------------------------------------------------------
2023-10-14 19:51:48,166 EPOCH 9 done: loss 0.0065 - lr: 0.000003
2023-10-14 19:51:54,459 DEV : loss 0.40861621499061584 - f1-score (micro avg) 0.6496
2023-10-14 19:51:54,491 ----------------------------------------------------------------------------------------------------
2023-10-14 19:52:05,476 epoch 10 - iter 180/1809 - loss 0.00347599 - time (sec): 10.98 - samples/sec: 3484.27 - lr: 0.000003 - momentum: 0.000000
2023-10-14 19:52:16,545 epoch 10 - iter 360/1809 - loss 0.00318849 - time (sec): 22.05 - samples/sec: 3488.76 - lr: 0.000003 - momentum: 0.000000
2023-10-14 19:52:27,552 epoch 10 - iter 540/1809 - loss 0.00415644 - time (sec): 33.06 - samples/sec: 3444.26 - lr: 0.000002 - momentum: 0.000000
2023-10-14 19:52:38,746 epoch 10 - iter 720/1809 - loss 0.00401066 - time (sec): 44.25 - samples/sec: 3429.51 - lr: 0.000002 - momentum: 0.000000
2023-10-14 19:52:50,230 epoch 10 - iter 900/1809 - loss 0.00421623 - time (sec): 55.74 - samples/sec: 3410.38 - lr: 0.000002 - momentum: 0.000000
2023-10-14 19:53:01,536 epoch 10 - iter 1080/1809 - loss 0.00490989 - time (sec): 67.04 - samples/sec: 3402.50 - lr: 0.000001 - momentum: 0.000000
2023-10-14 19:53:12,373 epoch 10 - iter 1260/1809 - loss 0.00503163 - time (sec): 77.88 - samples/sec: 3395.85 - lr: 0.000001 - momentum: 0.000000
2023-10-14 19:53:23,229 epoch 10 - iter 1440/1809 - loss 0.00494148 - time (sec): 88.74 - samples/sec: 3381.82 - lr: 0.000001 - momentum: 0.000000
2023-10-14 19:53:34,347 epoch 10 - iter 1620/1809 - loss 0.00474586 - time (sec): 99.86 - samples/sec: 3392.70 - lr: 0.000000 - momentum: 0.000000
2023-10-14 19:53:45,922 epoch 10 - iter 1800/1809 - loss 0.00460738 - time (sec): 111.43 - samples/sec: 3394.00 - lr: 0.000000 - momentum: 0.000000
2023-10-14 19:53:46,432 ----------------------------------------------------------------------------------------------------
2023-10-14 19:53:46,432 EPOCH 10 done: loss 0.0046 - lr: 0.000000
2023-10-14 19:53:52,077 DEV : loss 0.40256527066230774 - f1-score (micro avg) 0.6524
2023-10-14 19:53:52,610 ----------------------------------------------------------------------------------------------------
2023-10-14 19:53:52,611 Loading model from best epoch ...
2023-10-14 19:53:55,979 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-14 19:54:03,479
Results:
- F-score (micro) 0.6649
- F-score (macro) 0.5416
- Accuracy 0.5127
By class:
precision recall f1-score support
loc 0.6498 0.8037 0.7186 591
pers 0.5723 0.7647 0.6547 357
org 0.2639 0.2405 0.2517 79
micro avg 0.5992 0.7468 0.6649 1027
macro avg 0.4953 0.6030 0.5416 1027
weighted avg 0.5932 0.7468 0.6605 1027
2023-10-14 19:54:03,479 ----------------------------------------------------------------------------------------------------