2023-10-14 22:24:23,665 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:24:23,681 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=13, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-14 22:24:23,681 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:24:23,681 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator 2023-10-14 22:24:23,681 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:24:23,681 Train: 14465 sentences 2023-10-14 22:24:23,681 (train_with_dev=False, train_with_test=False) 2023-10-14 22:24:23,681 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:24:23,681 Training Params: 2023-10-14 22:24:23,682 - learning_rate: "5e-05" 2023-10-14 22:24:23,682 - mini_batch_size: "4" 2023-10-14 22:24:23,682 - max_epochs: "10" 2023-10-14 22:24:23,682 - shuffle: "True" 2023-10-14 22:24:23,682 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:24:23,682 Plugins: 2023-10-14 22:24:23,682 - LinearScheduler | warmup_fraction: '0.1' 2023-10-14 22:24:23,682 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:24:23,682 Final evaluation on model from best epoch (best-model.pt) 2023-10-14 22:24:23,682 - metric: "('micro avg', 'f1-score')" 2023-10-14 22:24:23,682 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:24:23,682 Computation: 2023-10-14 22:24:23,682 - compute on device: cuda:0 2023-10-14 22:24:23,682 - embedding storage: none 2023-10-14 22:24:23,682 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:24:23,682 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3" 2023-10-14 22:24:23,682 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:24:23,682 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:24:39,984 epoch 1 - iter 361/3617 - loss 1.14411237 - time (sec): 16.30 - samples/sec: 2350.48 - lr: 0.000005 - momentum: 0.000000 2023-10-14 22:24:56,212 epoch 1 - iter 722/3617 - loss 0.67514192 - time (sec): 32.53 - samples/sec: 2339.73 - lr: 0.000010 - momentum: 0.000000 2023-10-14 22:25:12,297 epoch 1 - iter 1083/3617 - loss 0.50390301 - time (sec): 48.61 - samples/sec: 2328.13 - lr: 0.000015 - momentum: 0.000000 2023-10-14 22:25:28,530 epoch 1 - iter 1444/3617 - loss 0.40601014 - time (sec): 64.85 - samples/sec: 2353.71 - lr: 0.000020 - momentum: 0.000000 2023-10-14 22:25:44,722 epoch 1 - iter 1805/3617 - loss 0.34943623 - time (sec): 81.04 - samples/sec: 2350.57 - lr: 0.000025 - momentum: 0.000000 2023-10-14 22:26:01,008 epoch 1 - iter 2166/3617 - loss 0.31161011 - time (sec): 97.33 - samples/sec: 2361.85 - lr: 0.000030 - momentum: 0.000000 2023-10-14 22:26:17,105 epoch 1 - iter 2527/3617 - loss 0.28529419 - time (sec): 113.42 - samples/sec: 2354.24 - lr: 0.000035 - momentum: 0.000000 2023-10-14 22:26:33,313 epoch 1 - iter 2888/3617 - loss 0.26433511 - time (sec): 129.63 - samples/sec: 2349.50 - lr: 0.000040 - momentum: 0.000000 2023-10-14 22:26:49,604 epoch 1 - iter 3249/3617 - loss 0.24745537 - time (sec): 145.92 - samples/sec: 2345.15 - lr: 0.000045 - momentum: 0.000000 2023-10-14 22:27:05,658 epoch 1 - iter 3610/3617 - loss 0.23480737 - time (sec): 161.98 - samples/sec: 2341.11 - lr: 0.000050 - momentum: 0.000000 2023-10-14 22:27:05,978 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:27:05,979 EPOCH 1 done: loss 0.2345 - lr: 0.000050 2023-10-14 22:27:10,539 DEV : loss 0.1204783022403717 - f1-score (micro avg) 0.6165 2023-10-14 22:27:10,568 saving best model 2023-10-14 22:27:11,666 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:27:27,870 epoch 2 - iter 361/3617 - loss 0.10944507 - time (sec): 16.20 - samples/sec: 2293.52 - lr: 0.000049 - momentum: 0.000000 2023-10-14 22:27:44,134 epoch 2 - iter 722/3617 - loss 0.11087767 - time (sec): 32.47 - samples/sec: 2324.72 - lr: 0.000049 - momentum: 0.000000 2023-10-14 22:28:00,333 epoch 2 - iter 1083/3617 - loss 0.10916242 - time (sec): 48.67 - samples/sec: 2340.48 - lr: 0.000048 - momentum: 0.000000 2023-10-14 22:28:16,951 epoch 2 - iter 1444/3617 - loss 0.10841737 - time (sec): 65.28 - samples/sec: 2342.27 - lr: 0.000048 - momentum: 0.000000 2023-10-14 22:28:33,376 epoch 2 - iter 1805/3617 - loss 0.10539028 - time (sec): 81.71 - samples/sec: 2348.58 - lr: 0.000047 - momentum: 0.000000 2023-10-14 22:28:49,734 epoch 2 - iter 2166/3617 - loss 0.10557440 - time (sec): 98.07 - samples/sec: 2340.97 - lr: 0.000047 - momentum: 0.000000 2023-10-14 22:29:06,485 epoch 2 - iter 2527/3617 - loss 0.10690549 - time (sec): 114.82 - samples/sec: 2324.15 - lr: 0.000046 - momentum: 0.000000 2023-10-14 22:29:23,693 epoch 2 - iter 2888/3617 - loss 0.10699756 - time (sec): 132.03 - samples/sec: 2293.87 - lr: 0.000046 - momentum: 0.000000 2023-10-14 22:29:40,741 epoch 2 - iter 3249/3617 - loss 0.10562800 - time (sec): 149.07 - samples/sec: 2292.12 - lr: 0.000045 - momentum: 0.000000 2023-10-14 22:29:58,572 epoch 2 - iter 3610/3617 - loss 0.10569211 - time (sec): 166.90 - samples/sec: 2272.40 - lr: 0.000044 - momentum: 0.000000 2023-10-14 22:29:58,905 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:29:58,906 EPOCH 2 done: loss 0.1055 - lr: 0.000044 2023-10-14 22:30:04,590 DEV : loss 0.12628547847270966 - f1-score (micro avg) 0.6317 2023-10-14 22:30:04,620 saving best model 2023-10-14 22:30:05,095 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:30:22,157 epoch 3 - iter 361/3617 - loss 0.07241240 - time (sec): 17.06 - samples/sec: 2276.69 - lr: 0.000044 - momentum: 0.000000 2023-10-14 22:30:38,462 epoch 3 - iter 722/3617 - loss 0.08210114 - time (sec): 33.36 - samples/sec: 2296.47 - lr: 0.000043 - momentum: 0.000000 2023-10-14 22:30:54,856 epoch 3 - iter 1083/3617 - loss 0.08593425 - time (sec): 49.76 - samples/sec: 2290.48 - lr: 0.000043 - momentum: 0.000000 2023-10-14 22:31:11,133 epoch 3 - iter 1444/3617 - loss 0.08548915 - time (sec): 66.03 - samples/sec: 2313.74 - lr: 0.000042 - momentum: 0.000000 2023-10-14 22:31:27,541 epoch 3 - iter 1805/3617 - loss 0.08461469 - time (sec): 82.44 - samples/sec: 2306.26 - lr: 0.000042 - momentum: 0.000000 2023-10-14 22:31:43,628 epoch 3 - iter 2166/3617 - loss 0.08635041 - time (sec): 98.53 - samples/sec: 2312.85 - lr: 0.000041 - momentum: 0.000000 2023-10-14 22:31:59,971 epoch 3 - iter 2527/3617 - loss 0.08485842 - time (sec): 114.87 - samples/sec: 2312.01 - lr: 0.000041 - momentum: 0.000000 2023-10-14 22:32:16,971 epoch 3 - iter 2888/3617 - loss 0.08549985 - time (sec): 131.87 - samples/sec: 2296.93 - lr: 0.000040 - momentum: 0.000000 2023-10-14 22:32:33,296 epoch 3 - iter 3249/3617 - loss 0.08663415 - time (sec): 148.20 - samples/sec: 2303.61 - lr: 0.000039 - momentum: 0.000000 2023-10-14 22:32:49,490 epoch 3 - iter 3610/3617 - loss 0.08429051 - time (sec): 164.39 - samples/sec: 2306.91 - lr: 0.000039 - momentum: 0.000000 2023-10-14 22:32:49,802 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:32:49,802 EPOCH 3 done: loss 0.0842 - lr: 0.000039 2023-10-14 22:32:55,446 DEV : loss 0.20989196002483368 - f1-score (micro avg) 0.6037 2023-10-14 22:32:55,479 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:33:12,003 epoch 4 - iter 361/3617 - loss 0.05375131 - time (sec): 16.52 - samples/sec: 2361.28 - lr: 0.000038 - momentum: 0.000000 2023-10-14 22:33:28,293 epoch 4 - iter 722/3617 - loss 0.05179870 - time (sec): 32.81 - samples/sec: 2333.17 - lr: 0.000038 - momentum: 0.000000 2023-10-14 22:33:44,488 epoch 4 - iter 1083/3617 - loss 0.05834655 - time (sec): 49.01 - samples/sec: 2341.86 - lr: 0.000037 - momentum: 0.000000 2023-10-14 22:34:00,581 epoch 4 - iter 1444/3617 - loss 0.06136827 - time (sec): 65.10 - samples/sec: 2328.16 - lr: 0.000037 - momentum: 0.000000 2023-10-14 22:34:16,773 epoch 4 - iter 1805/3617 - loss 0.06036277 - time (sec): 81.29 - samples/sec: 2325.90 - lr: 0.000036 - momentum: 0.000000 2023-10-14 22:34:33,269 epoch 4 - iter 2166/3617 - loss 0.05903167 - time (sec): 97.79 - samples/sec: 2325.15 - lr: 0.000036 - momentum: 0.000000 2023-10-14 22:34:49,619 epoch 4 - iter 2527/3617 - loss 0.06019423 - time (sec): 114.14 - samples/sec: 2326.09 - lr: 0.000035 - momentum: 0.000000 2023-10-14 22:35:05,919 epoch 4 - iter 2888/3617 - loss 0.05917379 - time (sec): 130.44 - samples/sec: 2332.20 - lr: 0.000034 - momentum: 0.000000 2023-10-14 22:35:22,008 epoch 4 - iter 3249/3617 - loss 0.05967316 - time (sec): 146.53 - samples/sec: 2331.84 - lr: 0.000034 - momentum: 0.000000 2023-10-14 22:35:38,187 epoch 4 - iter 3610/3617 - loss 0.06116373 - time (sec): 162.71 - samples/sec: 2330.41 - lr: 0.000033 - momentum: 0.000000 2023-10-14 22:35:38,504 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:35:38,504 EPOCH 4 done: loss 0.0612 - lr: 0.000033 2023-10-14 22:35:44,746 DEV : loss 0.1986590474843979 - f1-score (micro avg) 0.5878 2023-10-14 22:35:44,778 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:36:01,076 epoch 5 - iter 361/3617 - loss 0.03740724 - time (sec): 16.30 - samples/sec: 2319.97 - lr: 0.000033 - momentum: 0.000000 2023-10-14 22:36:17,138 epoch 5 - iter 722/3617 - loss 0.03966765 - time (sec): 32.36 - samples/sec: 2346.52 - lr: 0.000032 - momentum: 0.000000 2023-10-14 22:36:33,336 epoch 5 - iter 1083/3617 - loss 0.03821815 - time (sec): 48.56 - samples/sec: 2340.28 - lr: 0.000032 - momentum: 0.000000 2023-10-14 22:36:49,708 epoch 5 - iter 1444/3617 - loss 0.04031259 - time (sec): 64.93 - samples/sec: 2319.12 - lr: 0.000031 - momentum: 0.000000 2023-10-14 22:37:05,485 epoch 5 - iter 1805/3617 - loss 0.04174152 - time (sec): 80.71 - samples/sec: 2332.59 - lr: 0.000031 - momentum: 0.000000 2023-10-14 22:37:21,125 epoch 5 - iter 2166/3617 - loss 0.04297498 - time (sec): 96.35 - samples/sec: 2339.87 - lr: 0.000030 - momentum: 0.000000 2023-10-14 22:37:36,708 epoch 5 - iter 2527/3617 - loss 0.04258961 - time (sec): 111.93 - samples/sec: 2344.68 - lr: 0.000029 - momentum: 0.000000 2023-10-14 22:37:52,583 epoch 5 - iter 2888/3617 - loss 0.04372580 - time (sec): 127.80 - samples/sec: 2364.58 - lr: 0.000029 - momentum: 0.000000 2023-10-14 22:38:08,775 epoch 5 - iter 3249/3617 - loss 0.04359994 - time (sec): 144.00 - samples/sec: 2365.75 - lr: 0.000028 - momentum: 0.000000 2023-10-14 22:38:25,264 epoch 5 - iter 3610/3617 - loss 0.04442056 - time (sec): 160.48 - samples/sec: 2364.36 - lr: 0.000028 - momentum: 0.000000 2023-10-14 22:38:25,575 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:38:25,575 EPOCH 5 done: loss 0.0444 - lr: 0.000028 2023-10-14 22:38:31,994 DEV : loss 0.3178099989891052 - f1-score (micro avg) 0.6277 2023-10-14 22:38:32,026 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:38:48,231 epoch 6 - iter 361/3617 - loss 0.03001037 - time (sec): 16.20 - samples/sec: 2221.52 - lr: 0.000027 - momentum: 0.000000 2023-10-14 22:39:04,620 epoch 6 - iter 722/3617 - loss 0.02850755 - time (sec): 32.59 - samples/sec: 2281.75 - lr: 0.000027 - momentum: 0.000000 2023-10-14 22:39:20,750 epoch 6 - iter 1083/3617 - loss 0.02922986 - time (sec): 48.72 - samples/sec: 2284.28 - lr: 0.000026 - momentum: 0.000000 2023-10-14 22:39:36,936 epoch 6 - iter 1444/3617 - loss 0.02915910 - time (sec): 64.91 - samples/sec: 2298.63 - lr: 0.000026 - momentum: 0.000000 2023-10-14 22:39:53,230 epoch 6 - iter 1805/3617 - loss 0.02933413 - time (sec): 81.20 - samples/sec: 2314.09 - lr: 0.000025 - momentum: 0.000000 2023-10-14 22:40:09,709 epoch 6 - iter 2166/3617 - loss 0.03005081 - time (sec): 97.68 - samples/sec: 2315.74 - lr: 0.000024 - momentum: 0.000000 2023-10-14 22:40:26,048 epoch 6 - iter 2527/3617 - loss 0.02966232 - time (sec): 114.02 - samples/sec: 2326.67 - lr: 0.000024 - momentum: 0.000000 2023-10-14 22:40:42,383 epoch 6 - iter 2888/3617 - loss 0.02981839 - time (sec): 130.36 - samples/sec: 2339.47 - lr: 0.000023 - momentum: 0.000000 2023-10-14 22:40:58,524 epoch 6 - iter 3249/3617 - loss 0.02973966 - time (sec): 146.50 - samples/sec: 2330.85 - lr: 0.000023 - momentum: 0.000000 2023-10-14 22:41:14,900 epoch 6 - iter 3610/3617 - loss 0.02923805 - time (sec): 162.87 - samples/sec: 2328.46 - lr: 0.000022 - momentum: 0.000000 2023-10-14 22:41:15,224 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:41:15,224 EPOCH 6 done: loss 0.0292 - lr: 0.000022 2023-10-14 22:41:21,572 DEV : loss 0.33707916736602783 - f1-score (micro avg) 0.6213 2023-10-14 22:41:21,602 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:41:37,794 epoch 7 - iter 361/3617 - loss 0.01859802 - time (sec): 16.19 - samples/sec: 2300.51 - lr: 0.000022 - momentum: 0.000000 2023-10-14 22:41:54,033 epoch 7 - iter 722/3617 - loss 0.01903138 - time (sec): 32.43 - samples/sec: 2362.56 - lr: 0.000021 - momentum: 0.000000 2023-10-14 22:42:10,288 epoch 7 - iter 1083/3617 - loss 0.01865096 - time (sec): 48.68 - samples/sec: 2382.51 - lr: 0.000021 - momentum: 0.000000 2023-10-14 22:42:26,441 epoch 7 - iter 1444/3617 - loss 0.02002715 - time (sec): 64.84 - samples/sec: 2354.60 - lr: 0.000020 - momentum: 0.000000 2023-10-14 22:42:42,763 epoch 7 - iter 1805/3617 - loss 0.02137933 - time (sec): 81.16 - samples/sec: 2346.99 - lr: 0.000019 - momentum: 0.000000 2023-10-14 22:42:59,040 epoch 7 - iter 2166/3617 - loss 0.02148678 - time (sec): 97.44 - samples/sec: 2344.17 - lr: 0.000019 - momentum: 0.000000 2023-10-14 22:43:15,412 epoch 7 - iter 2527/3617 - loss 0.02120220 - time (sec): 113.81 - samples/sec: 2350.02 - lr: 0.000018 - momentum: 0.000000 2023-10-14 22:43:31,984 epoch 7 - iter 2888/3617 - loss 0.02087245 - time (sec): 130.38 - samples/sec: 2325.28 - lr: 0.000018 - momentum: 0.000000 2023-10-14 22:43:48,572 epoch 7 - iter 3249/3617 - loss 0.02107711 - time (sec): 146.97 - samples/sec: 2323.76 - lr: 0.000017 - momentum: 0.000000 2023-10-14 22:44:04,971 epoch 7 - iter 3610/3617 - loss 0.02122186 - time (sec): 163.37 - samples/sec: 2320.88 - lr: 0.000017 - momentum: 0.000000 2023-10-14 22:44:05,290 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:44:05,290 EPOCH 7 done: loss 0.0212 - lr: 0.000017 2023-10-14 22:44:11,627 DEV : loss 0.361693799495697 - f1-score (micro avg) 0.6369 2023-10-14 22:44:11,657 saving best model 2023-10-14 22:44:12,152 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:44:27,823 epoch 8 - iter 361/3617 - loss 0.01351269 - time (sec): 15.67 - samples/sec: 2353.69 - lr: 0.000016 - momentum: 0.000000 2023-10-14 22:44:43,592 epoch 8 - iter 722/3617 - loss 0.01225598 - time (sec): 31.44 - samples/sec: 2406.07 - lr: 0.000016 - momentum: 0.000000 2023-10-14 22:44:59,904 epoch 8 - iter 1083/3617 - loss 0.01341753 - time (sec): 47.75 - samples/sec: 2381.72 - lr: 0.000015 - momentum: 0.000000 2023-10-14 22:45:16,276 epoch 8 - iter 1444/3617 - loss 0.01425253 - time (sec): 64.12 - samples/sec: 2362.31 - lr: 0.000014 - momentum: 0.000000 2023-10-14 22:45:32,508 epoch 8 - iter 1805/3617 - loss 0.01310324 - time (sec): 80.35 - samples/sec: 2346.05 - lr: 0.000014 - momentum: 0.000000 2023-10-14 22:45:48,816 epoch 8 - iter 2166/3617 - loss 0.01431964 - time (sec): 96.66 - samples/sec: 2349.41 - lr: 0.000013 - momentum: 0.000000 2023-10-14 22:46:05,005 epoch 8 - iter 2527/3617 - loss 0.01396577 - time (sec): 112.85 - samples/sec: 2355.77 - lr: 0.000013 - momentum: 0.000000 2023-10-14 22:46:21,476 epoch 8 - iter 2888/3617 - loss 0.01450336 - time (sec): 129.32 - samples/sec: 2344.06 - lr: 0.000012 - momentum: 0.000000 2023-10-14 22:46:37,782 epoch 8 - iter 3249/3617 - loss 0.01434939 - time (sec): 145.63 - samples/sec: 2338.44 - lr: 0.000012 - momentum: 0.000000 2023-10-14 22:46:54,197 epoch 8 - iter 3610/3617 - loss 0.01473032 - time (sec): 162.04 - samples/sec: 2341.62 - lr: 0.000011 - momentum: 0.000000 2023-10-14 22:46:54,511 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:46:54,511 EPOCH 8 done: loss 0.0147 - lr: 0.000011 2023-10-14 22:47:00,034 DEV : loss 0.34752506017684937 - f1-score (micro avg) 0.6394 2023-10-14 22:47:00,064 saving best model 2023-10-14 22:47:00,550 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:47:17,022 epoch 9 - iter 361/3617 - loss 0.00749889 - time (sec): 16.47 - samples/sec: 2321.67 - lr: 0.000011 - momentum: 0.000000 2023-10-14 22:47:34,147 epoch 9 - iter 722/3617 - loss 0.00782066 - time (sec): 33.59 - samples/sec: 2255.80 - lr: 0.000010 - momentum: 0.000000 2023-10-14 22:47:50,414 epoch 9 - iter 1083/3617 - loss 0.00872382 - time (sec): 49.86 - samples/sec: 2277.97 - lr: 0.000009 - momentum: 0.000000 2023-10-14 22:48:06,823 epoch 9 - iter 1444/3617 - loss 0.00879945 - time (sec): 66.27 - samples/sec: 2300.11 - lr: 0.000009 - momentum: 0.000000 2023-10-14 22:48:23,139 epoch 9 - iter 1805/3617 - loss 0.00900892 - time (sec): 82.58 - samples/sec: 2307.07 - lr: 0.000008 - momentum: 0.000000 2023-10-14 22:48:39,443 epoch 9 - iter 2166/3617 - loss 0.00903195 - time (sec): 98.89 - samples/sec: 2324.67 - lr: 0.000008 - momentum: 0.000000 2023-10-14 22:48:55,699 epoch 9 - iter 2527/3617 - loss 0.00896221 - time (sec): 115.14 - samples/sec: 2324.22 - lr: 0.000007 - momentum: 0.000000 2023-10-14 22:49:11,720 epoch 9 - iter 2888/3617 - loss 0.00879283 - time (sec): 131.16 - samples/sec: 2321.25 - lr: 0.000007 - momentum: 0.000000 2023-10-14 22:49:27,516 epoch 9 - iter 3249/3617 - loss 0.00879301 - time (sec): 146.96 - samples/sec: 2330.96 - lr: 0.000006 - momentum: 0.000000 2023-10-14 22:49:43,105 epoch 9 - iter 3610/3617 - loss 0.00879727 - time (sec): 162.55 - samples/sec: 2333.30 - lr: 0.000006 - momentum: 0.000000 2023-10-14 22:49:43,399 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:49:43,399 EPOCH 9 done: loss 0.0088 - lr: 0.000006 2023-10-14 22:49:49,027 DEV : loss 0.3727048337459564 - f1-score (micro avg) 0.642 2023-10-14 22:49:49,058 saving best model 2023-10-14 22:49:49,702 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:50:06,227 epoch 10 - iter 361/3617 - loss 0.00310624 - time (sec): 16.52 - samples/sec: 2310.74 - lr: 0.000005 - momentum: 0.000000 2023-10-14 22:50:22,502 epoch 10 - iter 722/3617 - loss 0.00451557 - time (sec): 32.80 - samples/sec: 2328.34 - lr: 0.000004 - momentum: 0.000000 2023-10-14 22:50:38,889 epoch 10 - iter 1083/3617 - loss 0.00444647 - time (sec): 49.19 - samples/sec: 2309.90 - lr: 0.000004 - momentum: 0.000000 2023-10-14 22:50:55,390 epoch 10 - iter 1444/3617 - loss 0.00463820 - time (sec): 65.69 - samples/sec: 2314.50 - lr: 0.000003 - momentum: 0.000000 2023-10-14 22:51:11,711 epoch 10 - iter 1805/3617 - loss 0.00515326 - time (sec): 82.01 - samples/sec: 2320.49 - lr: 0.000003 - momentum: 0.000000 2023-10-14 22:51:28,115 epoch 10 - iter 2166/3617 - loss 0.00547593 - time (sec): 98.41 - samples/sec: 2315.27 - lr: 0.000002 - momentum: 0.000000 2023-10-14 22:51:44,415 epoch 10 - iter 2527/3617 - loss 0.00531709 - time (sec): 114.71 - samples/sec: 2314.93 - lr: 0.000002 - momentum: 0.000000 2023-10-14 22:52:00,847 epoch 10 - iter 2888/3617 - loss 0.00530082 - time (sec): 131.14 - samples/sec: 2319.13 - lr: 0.000001 - momentum: 0.000000 2023-10-14 22:52:16,770 epoch 10 - iter 3249/3617 - loss 0.00559223 - time (sec): 147.07 - samples/sec: 2311.01 - lr: 0.000001 - momentum: 0.000000 2023-10-14 22:52:33,249 epoch 10 - iter 3610/3617 - loss 0.00561927 - time (sec): 163.55 - samples/sec: 2320.26 - lr: 0.000000 - momentum: 0.000000 2023-10-14 22:52:33,559 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:52:33,559 EPOCH 10 done: loss 0.0056 - lr: 0.000000 2023-10-14 22:52:39,953 DEV : loss 0.3892402648925781 - f1-score (micro avg) 0.64 2023-10-14 22:52:40,542 ---------------------------------------------------------------------------------------------------- 2023-10-14 22:52:40,543 Loading model from best epoch ... 2023-10-14 22:52:42,344 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org 2023-10-14 22:52:50,738 Results: - F-score (micro) 0.6467 - F-score (macro) 0.4935 - Accuracy 0.4931 By class: precision recall f1-score support loc 0.6436 0.7394 0.6882 591 pers 0.5801 0.7507 0.6545 357 org 0.2162 0.1013 0.1379 79 micro avg 0.6053 0.6943 0.6467 1027 macro avg 0.4800 0.5305 0.4935 1027 weighted avg 0.5886 0.6943 0.6341 1027 2023-10-14 22:52:50,738 ----------------------------------------------------------------------------------------------------