Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +241 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c7ba022cd3eb75d155cc9c5888be90da571447d579f29b938ad016827443edd
|
3 |
+
size 443311111
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 19:08:04 0.0000 0.2432 0.1393 0.5138 0.6373 0.5689 0.4051
|
3 |
+
2 19:10:55 0.0000 0.1044 0.1309 0.5604 0.6796 0.6143 0.4500
|
4 |
+
3 19:13:46 0.0000 0.0815 0.1881 0.5478 0.7403 0.6297 0.4716
|
5 |
+
4 19:16:35 0.0000 0.0614 0.2195 0.5530 0.7048 0.6197 0.4563
|
6 |
+
5 19:19:25 0.0000 0.0443 0.3202 0.5204 0.7723 0.6218 0.4601
|
7 |
+
6 19:22:13 0.0000 0.0340 0.2958 0.5513 0.7494 0.6353 0.4743
|
8 |
+
7 19:25:04 0.0000 0.0237 0.2668 0.5551 0.7551 0.6398 0.4793
|
9 |
+
8 19:27:54 0.0000 0.0153 0.3516 0.5464 0.7540 0.6337 0.4738
|
10 |
+
9 19:30:45 0.0000 0.0098 0.3658 0.5435 0.7792 0.6403 0.4820
|
11 |
+
10 19:33:35 0.0000 0.0061 0.3829 0.5407 0.7609 0.6321 0.4726
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-14 19:05:16,272 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-14 19:05:16,273 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-14 19:05:16,273 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-14 19:05:16,273 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
|
53 |
+
2023-10-14 19:05:16,273 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-14 19:05:16,273 Train: 14465 sentences
|
55 |
+
2023-10-14 19:05:16,273 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-14 19:05:16,273 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-14 19:05:16,273 Training Params:
|
58 |
+
2023-10-14 19:05:16,273 - learning_rate: "5e-05"
|
59 |
+
2023-10-14 19:05:16,273 - mini_batch_size: "4"
|
60 |
+
2023-10-14 19:05:16,273 - max_epochs: "10"
|
61 |
+
2023-10-14 19:05:16,273 - shuffle: "True"
|
62 |
+
2023-10-14 19:05:16,273 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-14 19:05:16,273 Plugins:
|
64 |
+
2023-10-14 19:05:16,273 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-14 19:05:16,273 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-14 19:05:16,273 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-14 19:05:16,274 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-14 19:05:16,274 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-14 19:05:16,281 Computation:
|
70 |
+
2023-10-14 19:05:16,281 - compute on device: cuda:0
|
71 |
+
2023-10-14 19:05:16,281 - embedding storage: none
|
72 |
+
2023-10-14 19:05:16,281 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-14 19:05:16,281 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
74 |
+
2023-10-14 19:05:16,281 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-14 19:05:16,281 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-14 19:05:32,627 epoch 1 - iter 361/3617 - loss 1.23920084 - time (sec): 16.34 - samples/sec: 2350.13 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-14 19:05:48,957 epoch 1 - iter 722/3617 - loss 0.71530722 - time (sec): 32.67 - samples/sec: 2334.39 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-14 19:06:05,427 epoch 1 - iter 1083/3617 - loss 0.53270967 - time (sec): 49.14 - samples/sec: 2315.81 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-14 19:06:22,334 epoch 1 - iter 1444/3617 - loss 0.42703208 - time (sec): 66.05 - samples/sec: 2316.46 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-14 19:06:38,623 epoch 1 - iter 1805/3617 - loss 0.36797501 - time (sec): 82.34 - samples/sec: 2312.38 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-14 19:06:54,895 epoch 1 - iter 2166/3617 - loss 0.32750828 - time (sec): 98.61 - samples/sec: 2310.32 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-14 19:07:11,180 epoch 1 - iter 2527/3617 - loss 0.29684754 - time (sec): 114.90 - samples/sec: 2307.26 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-14 19:07:27,493 epoch 1 - iter 2888/3617 - loss 0.27335721 - time (sec): 131.21 - samples/sec: 2323.15 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-14 19:07:43,729 epoch 1 - iter 3249/3617 - loss 0.25684398 - time (sec): 147.45 - samples/sec: 2318.20 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-14 19:08:00,221 epoch 1 - iter 3610/3617 - loss 0.24344102 - time (sec): 163.94 - samples/sec: 2313.29 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-14 19:08:00,523 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-14 19:08:00,523 EPOCH 1 done: loss 0.2432 - lr: 0.000050
|
88 |
+
2023-10-14 19:08:04,935 DEV : loss 0.1392880529165268 - f1-score (micro avg) 0.5689
|
89 |
+
2023-10-14 19:08:04,964 saving best model
|
90 |
+
2023-10-14 19:08:05,441 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-14 19:08:22,439 epoch 2 - iter 361/3617 - loss 0.10163212 - time (sec): 17.00 - samples/sec: 2243.75 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-14 19:08:38,735 epoch 2 - iter 722/3617 - loss 0.10138989 - time (sec): 33.29 - samples/sec: 2294.93 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-14 19:08:55,123 epoch 2 - iter 1083/3617 - loss 0.10563254 - time (sec): 49.68 - samples/sec: 2312.87 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-14 19:09:11,321 epoch 2 - iter 1444/3617 - loss 0.10583746 - time (sec): 65.88 - samples/sec: 2308.77 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-14 19:09:28,181 epoch 2 - iter 1805/3617 - loss 0.10742122 - time (sec): 82.74 - samples/sec: 2285.53 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-14 19:09:44,590 epoch 2 - iter 2166/3617 - loss 0.10649535 - time (sec): 99.15 - samples/sec: 2297.31 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-14 19:10:00,921 epoch 2 - iter 2527/3617 - loss 0.10728153 - time (sec): 115.48 - samples/sec: 2303.87 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-14 19:10:17,234 epoch 2 - iter 2888/3617 - loss 0.10535240 - time (sec): 131.79 - samples/sec: 2303.35 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-14 19:10:33,540 epoch 2 - iter 3249/3617 - loss 0.10454269 - time (sec): 148.10 - samples/sec: 2307.34 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-14 19:10:49,774 epoch 2 - iter 3610/3617 - loss 0.10433026 - time (sec): 164.33 - samples/sec: 2307.84 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-14 19:10:50,080 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-14 19:10:50,080 EPOCH 2 done: loss 0.1044 - lr: 0.000044
|
103 |
+
2023-10-14 19:10:55,595 DEV : loss 0.13085970282554626 - f1-score (micro avg) 0.6143
|
104 |
+
2023-10-14 19:10:55,625 saving best model
|
105 |
+
2023-10-14 19:10:56,106 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-14 19:11:12,432 epoch 3 - iter 361/3617 - loss 0.07918586 - time (sec): 16.32 - samples/sec: 2170.00 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-14 19:11:28,688 epoch 3 - iter 722/3617 - loss 0.07745191 - time (sec): 32.58 - samples/sec: 2257.80 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-14 19:11:44,987 epoch 3 - iter 1083/3617 - loss 0.07935488 - time (sec): 48.88 - samples/sec: 2279.45 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-14 19:12:01,266 epoch 3 - iter 1444/3617 - loss 0.08119260 - time (sec): 65.16 - samples/sec: 2314.24 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-14 19:12:17,499 epoch 3 - iter 1805/3617 - loss 0.08212278 - time (sec): 81.39 - samples/sec: 2316.72 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-14 19:12:33,816 epoch 3 - iter 2166/3617 - loss 0.08334289 - time (sec): 97.71 - samples/sec: 2326.30 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-14 19:12:50,145 epoch 3 - iter 2527/3617 - loss 0.08219281 - time (sec): 114.04 - samples/sec: 2331.35 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-14 19:13:06,352 epoch 3 - iter 2888/3617 - loss 0.08216017 - time (sec): 130.24 - samples/sec: 2329.63 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-14 19:13:23,473 epoch 3 - iter 3249/3617 - loss 0.08248407 - time (sec): 147.37 - samples/sec: 2313.36 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-14 19:13:39,840 epoch 3 - iter 3610/3617 - loss 0.08153553 - time (sec): 163.73 - samples/sec: 2316.89 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-14 19:13:40,153 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-14 19:13:40,153 EPOCH 3 done: loss 0.0815 - lr: 0.000039
|
118 |
+
2023-10-14 19:13:46,359 DEV : loss 0.18807156383991241 - f1-score (micro avg) 0.6297
|
119 |
+
2023-10-14 19:13:46,388 saving best model
|
120 |
+
2023-10-14 19:13:46,968 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-14 19:14:03,475 epoch 4 - iter 361/3617 - loss 0.06057895 - time (sec): 16.50 - samples/sec: 2377.22 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-14 19:14:19,869 epoch 4 - iter 722/3617 - loss 0.06057279 - time (sec): 32.90 - samples/sec: 2329.53 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-14 19:14:36,163 epoch 4 - iter 1083/3617 - loss 0.06014925 - time (sec): 49.19 - samples/sec: 2321.32 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-14 19:14:52,280 epoch 4 - iter 1444/3617 - loss 0.06060661 - time (sec): 65.31 - samples/sec: 2305.72 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-14 19:15:08,428 epoch 4 - iter 1805/3617 - loss 0.06034321 - time (sec): 81.46 - samples/sec: 2323.14 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-14 19:15:24,537 epoch 4 - iter 2166/3617 - loss 0.06055420 - time (sec): 97.57 - samples/sec: 2322.80 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-14 19:15:40,905 epoch 4 - iter 2527/3617 - loss 0.06148213 - time (sec): 113.93 - samples/sec: 2325.01 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-14 19:15:57,092 epoch 4 - iter 2888/3617 - loss 0.06126538 - time (sec): 130.12 - samples/sec: 2331.57 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-14 19:16:13,259 epoch 4 - iter 3249/3617 - loss 0.06194798 - time (sec): 146.29 - samples/sec: 2334.61 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-14 19:16:29,462 epoch 4 - iter 3610/3617 - loss 0.06151356 - time (sec): 162.49 - samples/sec: 2333.50 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-14 19:16:29,772 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-14 19:16:29,773 EPOCH 4 done: loss 0.0614 - lr: 0.000033
|
133 |
+
2023-10-14 19:16:35,943 DEV : loss 0.2195165902376175 - f1-score (micro avg) 0.6197
|
134 |
+
2023-10-14 19:16:35,973 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-10-14 19:16:52,484 epoch 5 - iter 361/3617 - loss 0.04617918 - time (sec): 16.51 - samples/sec: 2385.58 - lr: 0.000033 - momentum: 0.000000
|
136 |
+
2023-10-14 19:17:08,608 epoch 5 - iter 722/3617 - loss 0.04463891 - time (sec): 32.63 - samples/sec: 2362.80 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-14 19:17:24,908 epoch 5 - iter 1083/3617 - loss 0.04774820 - time (sec): 48.93 - samples/sec: 2352.31 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-14 19:17:41,128 epoch 5 - iter 1444/3617 - loss 0.04829543 - time (sec): 65.15 - samples/sec: 2331.91 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-14 19:17:57,525 epoch 5 - iter 1805/3617 - loss 0.04629774 - time (sec): 81.55 - samples/sec: 2341.74 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-14 19:18:13,880 epoch 5 - iter 2166/3617 - loss 0.04539649 - time (sec): 97.91 - samples/sec: 2342.96 - lr: 0.000030 - momentum: 0.000000
|
141 |
+
2023-10-14 19:18:30,165 epoch 5 - iter 2527/3617 - loss 0.04517893 - time (sec): 114.19 - samples/sec: 2345.27 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-14 19:18:46,313 epoch 5 - iter 2888/3617 - loss 0.04431891 - time (sec): 130.34 - samples/sec: 2337.69 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-14 19:19:02,438 epoch 5 - iter 3249/3617 - loss 0.04447990 - time (sec): 146.46 - samples/sec: 2341.40 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-14 19:19:18,521 epoch 5 - iter 3610/3617 - loss 0.04436946 - time (sec): 162.55 - samples/sec: 2333.42 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-14 19:19:18,823 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-14 19:19:18,823 EPOCH 5 done: loss 0.0443 - lr: 0.000028
|
147 |
+
2023-10-14 19:19:25,023 DEV : loss 0.3201915919780731 - f1-score (micro avg) 0.6218
|
148 |
+
2023-10-14 19:19:25,052 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-14 19:19:41,359 epoch 6 - iter 361/3617 - loss 0.02847515 - time (sec): 16.31 - samples/sec: 2328.31 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-10-14 19:19:57,743 epoch 6 - iter 722/3617 - loss 0.03162381 - time (sec): 32.69 - samples/sec: 2301.42 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-14 19:20:13,935 epoch 6 - iter 1083/3617 - loss 0.03126177 - time (sec): 48.88 - samples/sec: 2288.28 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-10-14 19:20:30,140 epoch 6 - iter 1444/3617 - loss 0.03237564 - time (sec): 65.09 - samples/sec: 2296.72 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-14 19:20:46,426 epoch 6 - iter 1805/3617 - loss 0.03357153 - time (sec): 81.37 - samples/sec: 2314.60 - lr: 0.000025 - momentum: 0.000000
|
154 |
+
2023-10-14 19:21:02,702 epoch 6 - iter 2166/3617 - loss 0.03474249 - time (sec): 97.65 - samples/sec: 2321.83 - lr: 0.000024 - momentum: 0.000000
|
155 |
+
2023-10-14 19:21:18,924 epoch 6 - iter 2527/3617 - loss 0.03416368 - time (sec): 113.87 - samples/sec: 2318.63 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-14 19:21:35,300 epoch 6 - iter 2888/3617 - loss 0.03478335 - time (sec): 130.25 - samples/sec: 2333.53 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-10-14 19:21:51,568 epoch 6 - iter 3249/3617 - loss 0.03429456 - time (sec): 146.51 - samples/sec: 2326.16 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-14 19:22:07,803 epoch 6 - iter 3610/3617 - loss 0.03403117 - time (sec): 162.75 - samples/sec: 2330.17 - lr: 0.000022 - momentum: 0.000000
|
159 |
+
2023-10-14 19:22:08,110 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-14 19:22:08,110 EPOCH 6 done: loss 0.0340 - lr: 0.000022
|
161 |
+
2023-10-14 19:22:13,840 DEV : loss 0.295797199010849 - f1-score (micro avg) 0.6353
|
162 |
+
2023-10-14 19:22:13,873 saving best model
|
163 |
+
2023-10-14 19:22:15,198 ----------------------------------------------------------------------------------------------------
|
164 |
+
2023-10-14 19:22:31,709 epoch 7 - iter 361/3617 - loss 0.01782055 - time (sec): 16.51 - samples/sec: 2349.80 - lr: 0.000022 - momentum: 0.000000
|
165 |
+
2023-10-14 19:22:48,225 epoch 7 - iter 722/3617 - loss 0.02038942 - time (sec): 33.02 - samples/sec: 2334.00 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-14 19:23:04,594 epoch 7 - iter 1083/3617 - loss 0.02125683 - time (sec): 49.39 - samples/sec: 2328.23 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-14 19:23:20,803 epoch 7 - iter 1444/3617 - loss 0.02186389 - time (sec): 65.60 - samples/sec: 2329.56 - lr: 0.000020 - momentum: 0.000000
|
168 |
+
2023-10-14 19:23:37,105 epoch 7 - iter 1805/3617 - loss 0.02286446 - time (sec): 81.90 - samples/sec: 2327.67 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-14 19:23:53,394 epoch 7 - iter 2166/3617 - loss 0.02265517 - time (sec): 98.19 - samples/sec: 2327.00 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-14 19:24:09,594 epoch 7 - iter 2527/3617 - loss 0.02328181 - time (sec): 114.39 - samples/sec: 2325.06 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-14 19:24:25,973 epoch 7 - iter 2888/3617 - loss 0.02329662 - time (sec): 130.77 - samples/sec: 2325.37 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-14 19:24:42,223 epoch 7 - iter 3249/3617 - loss 0.02335070 - time (sec): 147.02 - samples/sec: 2321.86 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-14 19:24:58,552 epoch 7 - iter 3610/3617 - loss 0.02367072 - time (sec): 163.35 - samples/sec: 2321.55 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-14 19:24:58,858 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-14 19:24:58,858 EPOCH 7 done: loss 0.0237 - lr: 0.000017
|
176 |
+
2023-10-14 19:25:04,434 DEV : loss 0.2667960822582245 - f1-score (micro avg) 0.6398
|
177 |
+
2023-10-14 19:25:04,468 saving best model
|
178 |
+
2023-10-14 19:25:05,056 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-14 19:25:21,333 epoch 8 - iter 361/3617 - loss 0.01420959 - time (sec): 16.27 - samples/sec: 2271.05 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-10-14 19:25:37,646 epoch 8 - iter 722/3617 - loss 0.01438499 - time (sec): 32.59 - samples/sec: 2300.97 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-10-14 19:25:54,010 epoch 8 - iter 1083/3617 - loss 0.01612726 - time (sec): 48.95 - samples/sec: 2324.11 - lr: 0.000015 - momentum: 0.000000
|
182 |
+
2023-10-14 19:26:10,324 epoch 8 - iter 1444/3617 - loss 0.01522163 - time (sec): 65.26 - samples/sec: 2323.82 - lr: 0.000014 - momentum: 0.000000
|
183 |
+
2023-10-14 19:26:26,522 epoch 8 - iter 1805/3617 - loss 0.01523890 - time (sec): 81.46 - samples/sec: 2319.15 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-10-14 19:26:42,609 epoch 8 - iter 2166/3617 - loss 0.01636181 - time (sec): 97.55 - samples/sec: 2301.16 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-10-14 19:26:59,146 epoch 8 - iter 2527/3617 - loss 0.01647260 - time (sec): 114.09 - samples/sec: 2313.61 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-10-14 19:27:15,466 epoch 8 - iter 2888/3617 - loss 0.01588100 - time (sec): 130.41 - samples/sec: 2311.13 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-10-14 19:27:31,824 epoch 8 - iter 3249/3617 - loss 0.01566046 - time (sec): 146.76 - samples/sec: 2319.16 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-10-14 19:27:48,117 epoch 8 - iter 3610/3617 - loss 0.01532074 - time (sec): 163.06 - samples/sec: 2325.05 - lr: 0.000011 - momentum: 0.000000
|
189 |
+
2023-10-14 19:27:48,435 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-14 19:27:48,435 EPOCH 8 done: loss 0.0153 - lr: 0.000011
|
191 |
+
2023-10-14 19:27:54,685 DEV : loss 0.3515782952308655 - f1-score (micro avg) 0.6337
|
192 |
+
2023-10-14 19:27:54,715 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-14 19:28:11,336 epoch 9 - iter 361/3617 - loss 0.01078017 - time (sec): 16.62 - samples/sec: 2283.55 - lr: 0.000011 - momentum: 0.000000
|
194 |
+
2023-10-14 19:28:27,693 epoch 9 - iter 722/3617 - loss 0.01382949 - time (sec): 32.98 - samples/sec: 2335.85 - lr: 0.000010 - momentum: 0.000000
|
195 |
+
2023-10-14 19:28:43,933 epoch 9 - iter 1083/3617 - loss 0.01233271 - time (sec): 49.22 - samples/sec: 2346.52 - lr: 0.000009 - momentum: 0.000000
|
196 |
+
2023-10-14 19:29:00,350 epoch 9 - iter 1444/3617 - loss 0.01223895 - time (sec): 65.63 - samples/sec: 2317.17 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-10-14 19:29:16,569 epoch 9 - iter 1805/3617 - loss 0.01153695 - time (sec): 81.85 - samples/sec: 2317.35 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-10-14 19:29:32,978 epoch 9 - iter 2166/3617 - loss 0.01075403 - time (sec): 98.26 - samples/sec: 2311.68 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-10-14 19:29:49,302 epoch 9 - iter 2527/3617 - loss 0.01022522 - time (sec): 114.59 - samples/sec: 2302.94 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-10-14 19:30:05,794 epoch 9 - iter 2888/3617 - loss 0.01001724 - time (sec): 131.08 - samples/sec: 2302.46 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-10-14 19:30:22,232 epoch 9 - iter 3249/3617 - loss 0.01004538 - time (sec): 147.52 - samples/sec: 2308.06 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-10-14 19:30:38,601 epoch 9 - iter 3610/3617 - loss 0.00979458 - time (sec): 163.88 - samples/sec: 2314.28 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-10-14 19:30:38,911 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-14 19:30:38,911 EPOCH 9 done: loss 0.0098 - lr: 0.000006
|
205 |
+
2023-10-14 19:30:45,203 DEV : loss 0.365791916847229 - f1-score (micro avg) 0.6403
|
206 |
+
2023-10-14 19:30:45,260 saving best model
|
207 |
+
2023-10-14 19:30:45,882 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-14 19:31:02,260 epoch 10 - iter 361/3617 - loss 0.00465788 - time (sec): 16.38 - samples/sec: 2343.20 - lr: 0.000005 - momentum: 0.000000
|
209 |
+
2023-10-14 19:31:18,604 epoch 10 - iter 722/3617 - loss 0.00449815 - time (sec): 32.72 - samples/sec: 2361.91 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-14 19:31:34,930 epoch 10 - iter 1083/3617 - loss 0.00507346 - time (sec): 49.05 - samples/sec: 2330.64 - lr: 0.000004 - momentum: 0.000000
|
211 |
+
2023-10-14 19:31:51,267 epoch 10 - iter 1444/3617 - loss 0.00557339 - time (sec): 65.38 - samples/sec: 2328.26 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-14 19:32:07,730 epoch 10 - iter 1805/3617 - loss 0.00531563 - time (sec): 81.85 - samples/sec: 2328.59 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-10-14 19:32:24,093 epoch 10 - iter 2166/3617 - loss 0.00641317 - time (sec): 98.21 - samples/sec: 2330.04 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-14 19:32:40,290 epoch 10 - iter 2527/3617 - loss 0.00595602 - time (sec): 114.41 - samples/sec: 2318.77 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-14 19:32:56,448 epoch 10 - iter 2888/3617 - loss 0.00598682 - time (sec): 130.56 - samples/sec: 2304.67 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-14 19:33:12,731 epoch 10 - iter 3249/3617 - loss 0.00596379 - time (sec): 146.85 - samples/sec: 2312.77 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-14 19:33:29,112 epoch 10 - iter 3610/3617 - loss 0.00609464 - time (sec): 163.23 - samples/sec: 2323.98 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-14 19:33:29,412 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-14 19:33:29,412 EPOCH 10 done: loss 0.0061 - lr: 0.000000
|
220 |
+
2023-10-14 19:33:35,636 DEV : loss 0.3828698396682739 - f1-score (micro avg) 0.6321
|
221 |
+
2023-10-14 19:33:36,042 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-14 19:33:36,043 Loading model from best epoch ...
|
223 |
+
2023-10-14 19:33:37,423 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
|
224 |
+
2023-10-14 19:33:44,142
|
225 |
+
Results:
|
226 |
+
- F-score (micro) 0.6452
|
227 |
+
- F-score (macro) 0.4857
|
228 |
+
- Accuracy 0.4899
|
229 |
+
|
230 |
+
By class:
|
231 |
+
precision recall f1-score support
|
232 |
+
|
233 |
+
loc 0.6283 0.8037 0.7053 591
|
234 |
+
pers 0.5526 0.7507 0.6366 357
|
235 |
+
org 0.1333 0.1013 0.1151 79
|
236 |
+
|
237 |
+
micro avg 0.5772 0.7313 0.6452 1027
|
238 |
+
macro avg 0.4381 0.5519 0.4857 1027
|
239 |
+
weighted avg 0.5639 0.7313 0.6360 1027
|
240 |
+
|
241 |
+
2023-10-14 19:33:44,142 ----------------------------------------------------------------------------------------------------
|