2023-10-14 18:32:53,099 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:32:53,100 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=13, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-14 18:32:53,100 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:32:53,100 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator 2023-10-14 18:32:53,100 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:32:53,100 Train: 14465 sentences 2023-10-14 18:32:53,100 (train_with_dev=False, train_with_test=False) 2023-10-14 18:32:53,100 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:32:53,100 Training Params: 2023-10-14 18:32:53,101 - learning_rate: "3e-05" 2023-10-14 18:32:53,101 - mini_batch_size: "4" 2023-10-14 18:32:53,101 - max_epochs: "10" 2023-10-14 18:32:53,101 - shuffle: "True" 2023-10-14 18:32:53,101 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:32:53,101 Plugins: 2023-10-14 18:32:53,101 - LinearScheduler | warmup_fraction: '0.1' 2023-10-14 18:32:53,101 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:32:53,101 Final evaluation on model from best epoch (best-model.pt) 2023-10-14 18:32:53,101 - metric: "('micro avg', 'f1-score')" 2023-10-14 18:32:53,101 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:32:53,101 Computation: 2023-10-14 18:32:53,101 - compute on device: cuda:0 2023-10-14 18:32:53,101 - embedding storage: none 2023-10-14 18:32:53,101 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:32:53,101 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1" 2023-10-14 18:32:53,101 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:32:53,101 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:33:11,011 epoch 1 - iter 361/3617 - loss 1.49793342 - time (sec): 17.91 - samples/sec: 2144.90 - lr: 0.000003 - momentum: 0.000000 2023-10-14 18:33:28,000 epoch 1 - iter 722/3617 - loss 0.85914597 - time (sec): 34.90 - samples/sec: 2185.64 - lr: 0.000006 - momentum: 0.000000 2023-10-14 18:33:44,513 epoch 1 - iter 1083/3617 - loss 0.63406158 - time (sec): 51.41 - samples/sec: 2213.73 - lr: 0.000009 - momentum: 0.000000 2023-10-14 18:34:01,032 epoch 1 - iter 1444/3617 - loss 0.50536750 - time (sec): 67.93 - samples/sec: 2252.43 - lr: 0.000012 - momentum: 0.000000 2023-10-14 18:34:17,641 epoch 1 - iter 1805/3617 - loss 0.43148914 - time (sec): 84.54 - samples/sec: 2252.23 - lr: 0.000015 - momentum: 0.000000 2023-10-14 18:34:33,662 epoch 1 - iter 2166/3617 - loss 0.38143642 - time (sec): 100.56 - samples/sec: 2265.58 - lr: 0.000018 - momentum: 0.000000 2023-10-14 18:34:50,400 epoch 1 - iter 2527/3617 - loss 0.34330335 - time (sec): 117.30 - samples/sec: 2260.05 - lr: 0.000021 - momentum: 0.000000 2023-10-14 18:35:06,830 epoch 1 - iter 2888/3617 - loss 0.31397767 - time (sec): 133.73 - samples/sec: 2279.40 - lr: 0.000024 - momentum: 0.000000 2023-10-14 18:35:23,147 epoch 1 - iter 3249/3617 - loss 0.29300894 - time (sec): 150.04 - samples/sec: 2278.06 - lr: 0.000027 - momentum: 0.000000 2023-10-14 18:35:39,897 epoch 1 - iter 3610/3617 - loss 0.27489902 - time (sec): 166.80 - samples/sec: 2273.67 - lr: 0.000030 - momentum: 0.000000 2023-10-14 18:35:40,216 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:35:40,217 EPOCH 1 done: loss 0.2746 - lr: 0.000030 2023-10-14 18:35:45,572 DEV : loss 0.1469813734292984 - f1-score (micro avg) 0.5839 2023-10-14 18:35:45,603 saving best model 2023-10-14 18:35:46,156 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:36:05,275 epoch 2 - iter 361/3617 - loss 0.09657648 - time (sec): 19.12 - samples/sec: 1994.77 - lr: 0.000030 - momentum: 0.000000 2023-10-14 18:36:24,315 epoch 2 - iter 722/3617 - loss 0.09526196 - time (sec): 38.16 - samples/sec: 2002.34 - lr: 0.000029 - momentum: 0.000000 2023-10-14 18:36:43,401 epoch 2 - iter 1083/3617 - loss 0.09794662 - time (sec): 57.24 - samples/sec: 2007.27 - lr: 0.000029 - momentum: 0.000000 2023-10-14 18:37:02,359 epoch 2 - iter 1444/3617 - loss 0.10000382 - time (sec): 76.20 - samples/sec: 1996.00 - lr: 0.000029 - momentum: 0.000000 2023-10-14 18:37:21,435 epoch 2 - iter 1805/3617 - loss 0.09984349 - time (sec): 95.28 - samples/sec: 1984.72 - lr: 0.000028 - momentum: 0.000000 2023-10-14 18:37:40,211 epoch 2 - iter 2166/3617 - loss 0.09842580 - time (sec): 114.05 - samples/sec: 1997.07 - lr: 0.000028 - momentum: 0.000000 2023-10-14 18:37:59,219 epoch 2 - iter 2527/3617 - loss 0.09886238 - time (sec): 133.06 - samples/sec: 1999.42 - lr: 0.000028 - momentum: 0.000000 2023-10-14 18:38:18,114 epoch 2 - iter 2888/3617 - loss 0.09750237 - time (sec): 151.96 - samples/sec: 1997.68 - lr: 0.000027 - momentum: 0.000000 2023-10-14 18:38:36,932 epoch 2 - iter 3249/3617 - loss 0.09684901 - time (sec): 170.77 - samples/sec: 2000.95 - lr: 0.000027 - momentum: 0.000000 2023-10-14 18:38:55,778 epoch 2 - iter 3610/3617 - loss 0.09693424 - time (sec): 189.62 - samples/sec: 2000.05 - lr: 0.000027 - momentum: 0.000000 2023-10-14 18:38:56,131 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:38:56,131 EPOCH 2 done: loss 0.0970 - lr: 0.000027 2023-10-14 18:39:02,429 DEV : loss 0.14265793561935425 - f1-score (micro avg) 0.6193 2023-10-14 18:39:02,457 saving best model 2023-10-14 18:39:02,982 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:39:21,781 epoch 3 - iter 361/3617 - loss 0.06955254 - time (sec): 18.79 - samples/sec: 1884.93 - lr: 0.000026 - momentum: 0.000000 2023-10-14 18:39:40,836 epoch 3 - iter 722/3617 - loss 0.06922338 - time (sec): 37.85 - samples/sec: 1943.55 - lr: 0.000026 - momentum: 0.000000 2023-10-14 18:39:59,620 epoch 3 - iter 1083/3617 - loss 0.07232891 - time (sec): 56.63 - samples/sec: 1967.42 - lr: 0.000026 - momentum: 0.000000 2023-10-14 18:40:18,296 epoch 3 - iter 1444/3617 - loss 0.07277401 - time (sec): 75.31 - samples/sec: 2002.36 - lr: 0.000025 - momentum: 0.000000 2023-10-14 18:40:36,983 epoch 3 - iter 1805/3617 - loss 0.07138983 - time (sec): 94.00 - samples/sec: 2006.08 - lr: 0.000025 - momentum: 0.000000 2023-10-14 18:40:55,720 epoch 3 - iter 2166/3617 - loss 0.07379404 - time (sec): 112.73 - samples/sec: 2016.27 - lr: 0.000025 - momentum: 0.000000 2023-10-14 18:41:14,768 epoch 3 - iter 2527/3617 - loss 0.07306798 - time (sec): 131.78 - samples/sec: 2017.47 - lr: 0.000024 - momentum: 0.000000 2023-10-14 18:41:33,623 epoch 3 - iter 2888/3617 - loss 0.07400133 - time (sec): 150.64 - samples/sec: 2014.28 - lr: 0.000024 - momentum: 0.000000 2023-10-14 18:41:52,426 epoch 3 - iter 3249/3617 - loss 0.07385904 - time (sec): 169.44 - samples/sec: 2012.00 - lr: 0.000024 - momentum: 0.000000 2023-10-14 18:42:11,275 epoch 3 - iter 3610/3617 - loss 0.07300804 - time (sec): 188.29 - samples/sec: 2014.74 - lr: 0.000023 - momentum: 0.000000 2023-10-14 18:42:11,633 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:42:11,633 EPOCH 3 done: loss 0.0730 - lr: 0.000023 2023-10-14 18:42:17,786 DEV : loss 0.19656439125537872 - f1-score (micro avg) 0.6213 2023-10-14 18:42:17,815 saving best model 2023-10-14 18:42:18,413 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:42:37,058 epoch 4 - iter 361/3617 - loss 0.04567558 - time (sec): 18.64 - samples/sec: 2104.23 - lr: 0.000023 - momentum: 0.000000 2023-10-14 18:42:55,665 epoch 4 - iter 722/3617 - loss 0.04907222 - time (sec): 37.25 - samples/sec: 2057.31 - lr: 0.000023 - momentum: 0.000000 2023-10-14 18:43:14,466 epoch 4 - iter 1083/3617 - loss 0.04822914 - time (sec): 56.05 - samples/sec: 2037.22 - lr: 0.000022 - momentum: 0.000000 2023-10-14 18:43:31,749 epoch 4 - iter 1444/3617 - loss 0.04834016 - time (sec): 73.33 - samples/sec: 2053.38 - lr: 0.000022 - momentum: 0.000000 2023-10-14 18:43:48,091 epoch 4 - iter 1805/3617 - loss 0.04851364 - time (sec): 89.68 - samples/sec: 2110.20 - lr: 0.000022 - momentum: 0.000000 2023-10-14 18:44:04,310 epoch 4 - iter 2166/3617 - loss 0.04902986 - time (sec): 105.90 - samples/sec: 2140.07 - lr: 0.000021 - momentum: 0.000000 2023-10-14 18:44:20,694 epoch 4 - iter 2527/3617 - loss 0.04948457 - time (sec): 122.28 - samples/sec: 2166.31 - lr: 0.000021 - momentum: 0.000000 2023-10-14 18:44:36,979 epoch 4 - iter 2888/3617 - loss 0.05023602 - time (sec): 138.57 - samples/sec: 2189.47 - lr: 0.000021 - momentum: 0.000000 2023-10-14 18:44:54,061 epoch 4 - iter 3249/3617 - loss 0.05065579 - time (sec): 155.65 - samples/sec: 2194.24 - lr: 0.000020 - momentum: 0.000000 2023-10-14 18:45:12,956 epoch 4 - iter 3610/3617 - loss 0.05150400 - time (sec): 174.54 - samples/sec: 2172.39 - lr: 0.000020 - momentum: 0.000000 2023-10-14 18:45:13,320 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:45:13,320 EPOCH 4 done: loss 0.0514 - lr: 0.000020 2023-10-14 18:45:18,927 DEV : loss 0.27270472049713135 - f1-score (micro avg) 0.622 2023-10-14 18:45:18,960 saving best model 2023-10-14 18:45:19,676 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:45:36,826 epoch 5 - iter 361/3617 - loss 0.03804518 - time (sec): 17.15 - samples/sec: 2296.61 - lr: 0.000020 - momentum: 0.000000 2023-10-14 18:45:55,785 epoch 5 - iter 722/3617 - loss 0.03841622 - time (sec): 36.11 - samples/sec: 2135.41 - lr: 0.000019 - momentum: 0.000000 2023-10-14 18:46:14,740 epoch 5 - iter 1083/3617 - loss 0.03924782 - time (sec): 55.06 - samples/sec: 2090.46 - lr: 0.000019 - momentum: 0.000000 2023-10-14 18:46:33,750 epoch 5 - iter 1444/3617 - loss 0.04097206 - time (sec): 74.07 - samples/sec: 2051.11 - lr: 0.000019 - momentum: 0.000000 2023-10-14 18:46:53,472 epoch 5 - iter 1805/3617 - loss 0.03960546 - time (sec): 93.79 - samples/sec: 2036.03 - lr: 0.000018 - momentum: 0.000000 2023-10-14 18:47:12,427 epoch 5 - iter 2166/3617 - loss 0.04004957 - time (sec): 112.75 - samples/sec: 2034.50 - lr: 0.000018 - momentum: 0.000000 2023-10-14 18:47:31,472 epoch 5 - iter 2527/3617 - loss 0.03876434 - time (sec): 131.79 - samples/sec: 2032.00 - lr: 0.000018 - momentum: 0.000000 2023-10-14 18:47:50,424 epoch 5 - iter 2888/3617 - loss 0.03792790 - time (sec): 150.75 - samples/sec: 2021.21 - lr: 0.000017 - momentum: 0.000000 2023-10-14 18:48:09,228 epoch 5 - iter 3249/3617 - loss 0.03873215 - time (sec): 169.55 - samples/sec: 2022.58 - lr: 0.000017 - momentum: 0.000000 2023-10-14 18:48:28,017 epoch 5 - iter 3610/3617 - loss 0.03865296 - time (sec): 188.34 - samples/sec: 2013.85 - lr: 0.000017 - momentum: 0.000000 2023-10-14 18:48:28,376 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:48:28,377 EPOCH 5 done: loss 0.0386 - lr: 0.000017 2023-10-14 18:48:33,939 DEV : loss 0.32902124524116516 - f1-score (micro avg) 0.6482 2023-10-14 18:48:33,971 saving best model 2023-10-14 18:48:34,499 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:48:53,479 epoch 6 - iter 361/3617 - loss 0.02506183 - time (sec): 18.98 - samples/sec: 2000.72 - lr: 0.000016 - momentum: 0.000000 2023-10-14 18:49:12,488 epoch 6 - iter 722/3617 - loss 0.02531762 - time (sec): 37.98 - samples/sec: 1980.58 - lr: 0.000016 - momentum: 0.000000 2023-10-14 18:49:31,432 epoch 6 - iter 1083/3617 - loss 0.02644327 - time (sec): 56.93 - samples/sec: 1964.83 - lr: 0.000016 - momentum: 0.000000 2023-10-14 18:49:50,306 epoch 6 - iter 1444/3617 - loss 0.02682723 - time (sec): 75.80 - samples/sec: 1972.03 - lr: 0.000015 - momentum: 0.000000 2023-10-14 18:50:09,249 epoch 6 - iter 1805/3617 - loss 0.02642346 - time (sec): 94.75 - samples/sec: 1987.90 - lr: 0.000015 - momentum: 0.000000 2023-10-14 18:50:28,143 epoch 6 - iter 2166/3617 - loss 0.02688605 - time (sec): 113.64 - samples/sec: 1995.11 - lr: 0.000015 - momentum: 0.000000 2023-10-14 18:50:47,094 epoch 6 - iter 2527/3617 - loss 0.02597740 - time (sec): 132.59 - samples/sec: 1991.28 - lr: 0.000014 - momentum: 0.000000 2023-10-14 18:51:06,110 epoch 6 - iter 2888/3617 - loss 0.02657743 - time (sec): 151.61 - samples/sec: 2004.75 - lr: 0.000014 - momentum: 0.000000 2023-10-14 18:51:24,765 epoch 6 - iter 3249/3617 - loss 0.02701549 - time (sec): 170.26 - samples/sec: 2001.72 - lr: 0.000014 - momentum: 0.000000 2023-10-14 18:51:43,525 epoch 6 - iter 3610/3617 - loss 0.02721336 - time (sec): 189.02 - samples/sec: 2006.30 - lr: 0.000013 - momentum: 0.000000 2023-10-14 18:51:43,876 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:51:43,877 EPOCH 6 done: loss 0.0272 - lr: 0.000013 2023-10-14 18:51:50,080 DEV : loss 0.3020953834056854 - f1-score (micro avg) 0.6316 2023-10-14 18:51:50,109 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:52:09,031 epoch 7 - iter 361/3617 - loss 0.01566413 - time (sec): 18.92 - samples/sec: 2050.15 - lr: 0.000013 - momentum: 0.000000 2023-10-14 18:52:28,180 epoch 7 - iter 722/3617 - loss 0.01602060 - time (sec): 38.07 - samples/sec: 2024.60 - lr: 0.000013 - momentum: 0.000000 2023-10-14 18:52:47,111 epoch 7 - iter 1083/3617 - loss 0.01755375 - time (sec): 57.00 - samples/sec: 2017.47 - lr: 0.000012 - momentum: 0.000000 2023-10-14 18:53:05,964 epoch 7 - iter 1444/3617 - loss 0.01898152 - time (sec): 75.85 - samples/sec: 2014.71 - lr: 0.000012 - momentum: 0.000000 2023-10-14 18:53:24,801 epoch 7 - iter 1805/3617 - loss 0.02029282 - time (sec): 94.69 - samples/sec: 2013.35 - lr: 0.000012 - momentum: 0.000000 2023-10-14 18:53:43,723 epoch 7 - iter 2166/3617 - loss 0.01945143 - time (sec): 113.61 - samples/sec: 2011.18 - lr: 0.000011 - momentum: 0.000000 2023-10-14 18:54:02,484 epoch 7 - iter 2527/3617 - loss 0.02008824 - time (sec): 132.37 - samples/sec: 2009.24 - lr: 0.000011 - momentum: 0.000000 2023-10-14 18:54:21,323 epoch 7 - iter 2888/3617 - loss 0.02026028 - time (sec): 151.21 - samples/sec: 2011.04 - lr: 0.000011 - momentum: 0.000000 2023-10-14 18:54:40,125 epoch 7 - iter 3249/3617 - loss 0.02016038 - time (sec): 170.01 - samples/sec: 2007.85 - lr: 0.000010 - momentum: 0.000000 2023-10-14 18:54:58,847 epoch 7 - iter 3610/3617 - loss 0.02025047 - time (sec): 188.74 - samples/sec: 2009.28 - lr: 0.000010 - momentum: 0.000000 2023-10-14 18:54:59,208 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:54:59,209 EPOCH 7 done: loss 0.0203 - lr: 0.000010 2023-10-14 18:55:05,497 DEV : loss 0.33693569898605347 - f1-score (micro avg) 0.6245 2023-10-14 18:55:05,525 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:55:24,336 epoch 8 - iter 361/3617 - loss 0.01327463 - time (sec): 18.81 - samples/sec: 1964.88 - lr: 0.000010 - momentum: 0.000000 2023-10-14 18:55:43,223 epoch 8 - iter 722/3617 - loss 0.01473725 - time (sec): 37.70 - samples/sec: 1989.05 - lr: 0.000009 - momentum: 0.000000 2023-10-14 18:56:02,086 epoch 8 - iter 1083/3617 - loss 0.01272106 - time (sec): 56.56 - samples/sec: 2011.45 - lr: 0.000009 - momentum: 0.000000 2023-10-14 18:56:20,916 epoch 8 - iter 1444/3617 - loss 0.01306734 - time (sec): 75.39 - samples/sec: 2011.73 - lr: 0.000009 - momentum: 0.000000 2023-10-14 18:56:39,693 epoch 8 - iter 1805/3617 - loss 0.01336643 - time (sec): 94.17 - samples/sec: 2006.28 - lr: 0.000008 - momentum: 0.000000 2023-10-14 18:56:58,759 epoch 8 - iter 2166/3617 - loss 0.01331363 - time (sec): 113.23 - samples/sec: 1982.43 - lr: 0.000008 - momentum: 0.000000 2023-10-14 18:57:17,808 epoch 8 - iter 2527/3617 - loss 0.01360786 - time (sec): 132.28 - samples/sec: 1995.37 - lr: 0.000008 - momentum: 0.000000 2023-10-14 18:57:36,722 epoch 8 - iter 2888/3617 - loss 0.01309021 - time (sec): 151.20 - samples/sec: 1993.35 - lr: 0.000007 - momentum: 0.000000 2023-10-14 18:57:55,357 epoch 8 - iter 3249/3617 - loss 0.01286633 - time (sec): 169.83 - samples/sec: 2004.16 - lr: 0.000007 - momentum: 0.000000 2023-10-14 18:58:14,255 epoch 8 - iter 3610/3617 - loss 0.01337274 - time (sec): 188.73 - samples/sec: 2008.80 - lr: 0.000007 - momentum: 0.000000 2023-10-14 18:58:14,611 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:58:14,611 EPOCH 8 done: loss 0.0134 - lr: 0.000007 2023-10-14 18:58:20,871 DEV : loss 0.3728400766849518 - f1-score (micro avg) 0.6292 2023-10-14 18:58:20,900 ---------------------------------------------------------------------------------------------------- 2023-10-14 18:58:39,836 epoch 9 - iter 361/3617 - loss 0.00636871 - time (sec): 18.93 - samples/sec: 2004.28 - lr: 0.000006 - momentum: 0.000000 2023-10-14 18:58:58,882 epoch 9 - iter 722/3617 - loss 0.00907563 - time (sec): 37.98 - samples/sec: 2028.07 - lr: 0.000006 - momentum: 0.000000 2023-10-14 18:59:17,616 epoch 9 - iter 1083/3617 - loss 0.00828252 - time (sec): 56.72 - samples/sec: 2036.27 - lr: 0.000006 - momentum: 0.000000 2023-10-14 18:59:36,465 epoch 9 - iter 1444/3617 - loss 0.00898628 - time (sec): 75.56 - samples/sec: 2012.65 - lr: 0.000005 - momentum: 0.000000 2023-10-14 18:59:55,560 epoch 9 - iter 1805/3617 - loss 0.00817358 - time (sec): 94.66 - samples/sec: 2003.84 - lr: 0.000005 - momentum: 0.000000 2023-10-14 19:00:14,343 epoch 9 - iter 2166/3617 - loss 0.00817291 - time (sec): 113.44 - samples/sec: 2002.35 - lr: 0.000005 - momentum: 0.000000 2023-10-14 19:00:33,183 epoch 9 - iter 2527/3617 - loss 0.00832167 - time (sec): 132.28 - samples/sec: 1994.85 - lr: 0.000004 - momentum: 0.000000 2023-10-14 19:00:52,035 epoch 9 - iter 2888/3617 - loss 0.00797829 - time (sec): 151.13 - samples/sec: 1996.91 - lr: 0.000004 - momentum: 0.000000 2023-10-14 19:01:10,800 epoch 9 - iter 3249/3617 - loss 0.00799275 - time (sec): 169.90 - samples/sec: 2003.98 - lr: 0.000004 - momentum: 0.000000 2023-10-14 19:01:30,189 epoch 9 - iter 3610/3617 - loss 0.00795879 - time (sec): 189.29 - samples/sec: 2003.69 - lr: 0.000003 - momentum: 0.000000 2023-10-14 19:01:30,546 ---------------------------------------------------------------------------------------------------- 2023-10-14 19:01:30,546 EPOCH 9 done: loss 0.0079 - lr: 0.000003 2023-10-14 19:01:36,746 DEV : loss 0.3810341954231262 - f1-score (micro avg) 0.6453 2023-10-14 19:01:36,775 ---------------------------------------------------------------------------------------------------- 2023-10-14 19:01:55,572 epoch 10 - iter 361/3617 - loss 0.00233359 - time (sec): 18.80 - samples/sec: 2041.41 - lr: 0.000003 - momentum: 0.000000 2023-10-14 19:02:12,702 epoch 10 - iter 722/3617 - loss 0.00511219 - time (sec): 35.93 - samples/sec: 2151.13 - lr: 0.000003 - momentum: 0.000000 2023-10-14 19:02:29,091 epoch 10 - iter 1083/3617 - loss 0.00547615 - time (sec): 52.32 - samples/sec: 2185.00 - lr: 0.000002 - momentum: 0.000000 2023-10-14 19:02:45,447 epoch 10 - iter 1444/3617 - loss 0.00486842 - time (sec): 68.67 - samples/sec: 2216.76 - lr: 0.000002 - momentum: 0.000000 2023-10-14 19:03:02,177 epoch 10 - iter 1805/3617 - loss 0.00509004 - time (sec): 85.40 - samples/sec: 2231.64 - lr: 0.000002 - momentum: 0.000000 2023-10-14 19:03:19,019 epoch 10 - iter 2166/3617 - loss 0.00541113 - time (sec): 102.24 - samples/sec: 2238.08 - lr: 0.000001 - momentum: 0.000000 2023-10-14 19:03:35,397 epoch 10 - iter 2527/3617 - loss 0.00522420 - time (sec): 118.62 - samples/sec: 2236.37 - lr: 0.000001 - momentum: 0.000000 2023-10-14 19:03:51,652 epoch 10 - iter 2888/3617 - loss 0.00553422 - time (sec): 134.88 - samples/sec: 2230.99 - lr: 0.000001 - momentum: 0.000000 2023-10-14 19:04:08,143 epoch 10 - iter 3249/3617 - loss 0.00538172 - time (sec): 151.37 - samples/sec: 2243.70 - lr: 0.000000 - momentum: 0.000000 2023-10-14 19:04:24,734 epoch 10 - iter 3610/3617 - loss 0.00535691 - time (sec): 167.96 - samples/sec: 2258.53 - lr: 0.000000 - momentum: 0.000000 2023-10-14 19:04:25,047 ---------------------------------------------------------------------------------------------------- 2023-10-14 19:04:25,047 EPOCH 10 done: loss 0.0053 - lr: 0.000000 2023-10-14 19:04:30,571 DEV : loss 0.395516961812973 - f1-score (micro avg) 0.6422 2023-10-14 19:04:31,008 ---------------------------------------------------------------------------------------------------- 2023-10-14 19:04:31,009 Loading model from best epoch ... 2023-10-14 19:04:33,509 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org 2023-10-14 19:04:40,299 Results: - F-score (micro) 0.6431 - F-score (macro) 0.5165 - Accuracy 0.4908 By class: precision recall f1-score support loc 0.6159 0.7868 0.6909 591 pers 0.5281 0.8151 0.6410 357 org 0.2353 0.2025 0.2177 79 micro avg 0.5619 0.7517 0.6431 1027 macro avg 0.4598 0.6015 0.5165 1027 weighted avg 0.5561 0.7517 0.6372 1027 2023-10-14 19:04:40,299 ----------------------------------------------------------------------------------------------------