File size: 24,056 Bytes
eb83e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
2023-10-14 18:32:53,099 ----------------------------------------------------------------------------------------------------
2023-10-14 18:32:53,100 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=13, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-14 18:32:53,100 ----------------------------------------------------------------------------------------------------
2023-10-14 18:32:53,100 MultiCorpus: 14465 train + 1392 dev + 2432 test sentences
 - NER_HIPE_2022 Corpus: 14465 train + 1392 dev + 2432 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/letemps/fr/with_doc_seperator
2023-10-14 18:32:53,100 ----------------------------------------------------------------------------------------------------
2023-10-14 18:32:53,100 Train:  14465 sentences
2023-10-14 18:32:53,100         (train_with_dev=False, train_with_test=False)
2023-10-14 18:32:53,100 ----------------------------------------------------------------------------------------------------
2023-10-14 18:32:53,100 Training Params:
2023-10-14 18:32:53,101  - learning_rate: "3e-05" 
2023-10-14 18:32:53,101  - mini_batch_size: "4"
2023-10-14 18:32:53,101  - max_epochs: "10"
2023-10-14 18:32:53,101  - shuffle: "True"
2023-10-14 18:32:53,101 ----------------------------------------------------------------------------------------------------
2023-10-14 18:32:53,101 Plugins:
2023-10-14 18:32:53,101  - LinearScheduler | warmup_fraction: '0.1'
2023-10-14 18:32:53,101 ----------------------------------------------------------------------------------------------------
2023-10-14 18:32:53,101 Final evaluation on model from best epoch (best-model.pt)
2023-10-14 18:32:53,101  - metric: "('micro avg', 'f1-score')"
2023-10-14 18:32:53,101 ----------------------------------------------------------------------------------------------------
2023-10-14 18:32:53,101 Computation:
2023-10-14 18:32:53,101  - compute on device: cuda:0
2023-10-14 18:32:53,101  - embedding storage: none
2023-10-14 18:32:53,101 ----------------------------------------------------------------------------------------------------
2023-10-14 18:32:53,101 Model training base path: "hmbench-letemps/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-14 18:32:53,101 ----------------------------------------------------------------------------------------------------
2023-10-14 18:32:53,101 ----------------------------------------------------------------------------------------------------
2023-10-14 18:33:11,011 epoch 1 - iter 361/3617 - loss 1.49793342 - time (sec): 17.91 - samples/sec: 2144.90 - lr: 0.000003 - momentum: 0.000000
2023-10-14 18:33:28,000 epoch 1 - iter 722/3617 - loss 0.85914597 - time (sec): 34.90 - samples/sec: 2185.64 - lr: 0.000006 - momentum: 0.000000
2023-10-14 18:33:44,513 epoch 1 - iter 1083/3617 - loss 0.63406158 - time (sec): 51.41 - samples/sec: 2213.73 - lr: 0.000009 - momentum: 0.000000
2023-10-14 18:34:01,032 epoch 1 - iter 1444/3617 - loss 0.50536750 - time (sec): 67.93 - samples/sec: 2252.43 - lr: 0.000012 - momentum: 0.000000
2023-10-14 18:34:17,641 epoch 1 - iter 1805/3617 - loss 0.43148914 - time (sec): 84.54 - samples/sec: 2252.23 - lr: 0.000015 - momentum: 0.000000
2023-10-14 18:34:33,662 epoch 1 - iter 2166/3617 - loss 0.38143642 - time (sec): 100.56 - samples/sec: 2265.58 - lr: 0.000018 - momentum: 0.000000
2023-10-14 18:34:50,400 epoch 1 - iter 2527/3617 - loss 0.34330335 - time (sec): 117.30 - samples/sec: 2260.05 - lr: 0.000021 - momentum: 0.000000
2023-10-14 18:35:06,830 epoch 1 - iter 2888/3617 - loss 0.31397767 - time (sec): 133.73 - samples/sec: 2279.40 - lr: 0.000024 - momentum: 0.000000
2023-10-14 18:35:23,147 epoch 1 - iter 3249/3617 - loss 0.29300894 - time (sec): 150.04 - samples/sec: 2278.06 - lr: 0.000027 - momentum: 0.000000
2023-10-14 18:35:39,897 epoch 1 - iter 3610/3617 - loss 0.27489902 - time (sec): 166.80 - samples/sec: 2273.67 - lr: 0.000030 - momentum: 0.000000
2023-10-14 18:35:40,216 ----------------------------------------------------------------------------------------------------
2023-10-14 18:35:40,217 EPOCH 1 done: loss 0.2746 - lr: 0.000030
2023-10-14 18:35:45,572 DEV : loss 0.1469813734292984 - f1-score (micro avg)  0.5839
2023-10-14 18:35:45,603 saving best model
2023-10-14 18:35:46,156 ----------------------------------------------------------------------------------------------------
2023-10-14 18:36:05,275 epoch 2 - iter 361/3617 - loss 0.09657648 - time (sec): 19.12 - samples/sec: 1994.77 - lr: 0.000030 - momentum: 0.000000
2023-10-14 18:36:24,315 epoch 2 - iter 722/3617 - loss 0.09526196 - time (sec): 38.16 - samples/sec: 2002.34 - lr: 0.000029 - momentum: 0.000000
2023-10-14 18:36:43,401 epoch 2 - iter 1083/3617 - loss 0.09794662 - time (sec): 57.24 - samples/sec: 2007.27 - lr: 0.000029 - momentum: 0.000000
2023-10-14 18:37:02,359 epoch 2 - iter 1444/3617 - loss 0.10000382 - time (sec): 76.20 - samples/sec: 1996.00 - lr: 0.000029 - momentum: 0.000000
2023-10-14 18:37:21,435 epoch 2 - iter 1805/3617 - loss 0.09984349 - time (sec): 95.28 - samples/sec: 1984.72 - lr: 0.000028 - momentum: 0.000000
2023-10-14 18:37:40,211 epoch 2 - iter 2166/3617 - loss 0.09842580 - time (sec): 114.05 - samples/sec: 1997.07 - lr: 0.000028 - momentum: 0.000000
2023-10-14 18:37:59,219 epoch 2 - iter 2527/3617 - loss 0.09886238 - time (sec): 133.06 - samples/sec: 1999.42 - lr: 0.000028 - momentum: 0.000000
2023-10-14 18:38:18,114 epoch 2 - iter 2888/3617 - loss 0.09750237 - time (sec): 151.96 - samples/sec: 1997.68 - lr: 0.000027 - momentum: 0.000000
2023-10-14 18:38:36,932 epoch 2 - iter 3249/3617 - loss 0.09684901 - time (sec): 170.77 - samples/sec: 2000.95 - lr: 0.000027 - momentum: 0.000000
2023-10-14 18:38:55,778 epoch 2 - iter 3610/3617 - loss 0.09693424 - time (sec): 189.62 - samples/sec: 2000.05 - lr: 0.000027 - momentum: 0.000000
2023-10-14 18:38:56,131 ----------------------------------------------------------------------------------------------------
2023-10-14 18:38:56,131 EPOCH 2 done: loss 0.0970 - lr: 0.000027
2023-10-14 18:39:02,429 DEV : loss 0.14265793561935425 - f1-score (micro avg)  0.6193
2023-10-14 18:39:02,457 saving best model
2023-10-14 18:39:02,982 ----------------------------------------------------------------------------------------------------
2023-10-14 18:39:21,781 epoch 3 - iter 361/3617 - loss 0.06955254 - time (sec): 18.79 - samples/sec: 1884.93 - lr: 0.000026 - momentum: 0.000000
2023-10-14 18:39:40,836 epoch 3 - iter 722/3617 - loss 0.06922338 - time (sec): 37.85 - samples/sec: 1943.55 - lr: 0.000026 - momentum: 0.000000
2023-10-14 18:39:59,620 epoch 3 - iter 1083/3617 - loss 0.07232891 - time (sec): 56.63 - samples/sec: 1967.42 - lr: 0.000026 - momentum: 0.000000
2023-10-14 18:40:18,296 epoch 3 - iter 1444/3617 - loss 0.07277401 - time (sec): 75.31 - samples/sec: 2002.36 - lr: 0.000025 - momentum: 0.000000
2023-10-14 18:40:36,983 epoch 3 - iter 1805/3617 - loss 0.07138983 - time (sec): 94.00 - samples/sec: 2006.08 - lr: 0.000025 - momentum: 0.000000
2023-10-14 18:40:55,720 epoch 3 - iter 2166/3617 - loss 0.07379404 - time (sec): 112.73 - samples/sec: 2016.27 - lr: 0.000025 - momentum: 0.000000
2023-10-14 18:41:14,768 epoch 3 - iter 2527/3617 - loss 0.07306798 - time (sec): 131.78 - samples/sec: 2017.47 - lr: 0.000024 - momentum: 0.000000
2023-10-14 18:41:33,623 epoch 3 - iter 2888/3617 - loss 0.07400133 - time (sec): 150.64 - samples/sec: 2014.28 - lr: 0.000024 - momentum: 0.000000
2023-10-14 18:41:52,426 epoch 3 - iter 3249/3617 - loss 0.07385904 - time (sec): 169.44 - samples/sec: 2012.00 - lr: 0.000024 - momentum: 0.000000
2023-10-14 18:42:11,275 epoch 3 - iter 3610/3617 - loss 0.07300804 - time (sec): 188.29 - samples/sec: 2014.74 - lr: 0.000023 - momentum: 0.000000
2023-10-14 18:42:11,633 ----------------------------------------------------------------------------------------------------
2023-10-14 18:42:11,633 EPOCH 3 done: loss 0.0730 - lr: 0.000023
2023-10-14 18:42:17,786 DEV : loss 0.19656439125537872 - f1-score (micro avg)  0.6213
2023-10-14 18:42:17,815 saving best model
2023-10-14 18:42:18,413 ----------------------------------------------------------------------------------------------------
2023-10-14 18:42:37,058 epoch 4 - iter 361/3617 - loss 0.04567558 - time (sec): 18.64 - samples/sec: 2104.23 - lr: 0.000023 - momentum: 0.000000
2023-10-14 18:42:55,665 epoch 4 - iter 722/3617 - loss 0.04907222 - time (sec): 37.25 - samples/sec: 2057.31 - lr: 0.000023 - momentum: 0.000000
2023-10-14 18:43:14,466 epoch 4 - iter 1083/3617 - loss 0.04822914 - time (sec): 56.05 - samples/sec: 2037.22 - lr: 0.000022 - momentum: 0.000000
2023-10-14 18:43:31,749 epoch 4 - iter 1444/3617 - loss 0.04834016 - time (sec): 73.33 - samples/sec: 2053.38 - lr: 0.000022 - momentum: 0.000000
2023-10-14 18:43:48,091 epoch 4 - iter 1805/3617 - loss 0.04851364 - time (sec): 89.68 - samples/sec: 2110.20 - lr: 0.000022 - momentum: 0.000000
2023-10-14 18:44:04,310 epoch 4 - iter 2166/3617 - loss 0.04902986 - time (sec): 105.90 - samples/sec: 2140.07 - lr: 0.000021 - momentum: 0.000000
2023-10-14 18:44:20,694 epoch 4 - iter 2527/3617 - loss 0.04948457 - time (sec): 122.28 - samples/sec: 2166.31 - lr: 0.000021 - momentum: 0.000000
2023-10-14 18:44:36,979 epoch 4 - iter 2888/3617 - loss 0.05023602 - time (sec): 138.57 - samples/sec: 2189.47 - lr: 0.000021 - momentum: 0.000000
2023-10-14 18:44:54,061 epoch 4 - iter 3249/3617 - loss 0.05065579 - time (sec): 155.65 - samples/sec: 2194.24 - lr: 0.000020 - momentum: 0.000000
2023-10-14 18:45:12,956 epoch 4 - iter 3610/3617 - loss 0.05150400 - time (sec): 174.54 - samples/sec: 2172.39 - lr: 0.000020 - momentum: 0.000000
2023-10-14 18:45:13,320 ----------------------------------------------------------------------------------------------------
2023-10-14 18:45:13,320 EPOCH 4 done: loss 0.0514 - lr: 0.000020
2023-10-14 18:45:18,927 DEV : loss 0.27270472049713135 - f1-score (micro avg)  0.622
2023-10-14 18:45:18,960 saving best model
2023-10-14 18:45:19,676 ----------------------------------------------------------------------------------------------------
2023-10-14 18:45:36,826 epoch 5 - iter 361/3617 - loss 0.03804518 - time (sec): 17.15 - samples/sec: 2296.61 - lr: 0.000020 - momentum: 0.000000
2023-10-14 18:45:55,785 epoch 5 - iter 722/3617 - loss 0.03841622 - time (sec): 36.11 - samples/sec: 2135.41 - lr: 0.000019 - momentum: 0.000000
2023-10-14 18:46:14,740 epoch 5 - iter 1083/3617 - loss 0.03924782 - time (sec): 55.06 - samples/sec: 2090.46 - lr: 0.000019 - momentum: 0.000000
2023-10-14 18:46:33,750 epoch 5 - iter 1444/3617 - loss 0.04097206 - time (sec): 74.07 - samples/sec: 2051.11 - lr: 0.000019 - momentum: 0.000000
2023-10-14 18:46:53,472 epoch 5 - iter 1805/3617 - loss 0.03960546 - time (sec): 93.79 - samples/sec: 2036.03 - lr: 0.000018 - momentum: 0.000000
2023-10-14 18:47:12,427 epoch 5 - iter 2166/3617 - loss 0.04004957 - time (sec): 112.75 - samples/sec: 2034.50 - lr: 0.000018 - momentum: 0.000000
2023-10-14 18:47:31,472 epoch 5 - iter 2527/3617 - loss 0.03876434 - time (sec): 131.79 - samples/sec: 2032.00 - lr: 0.000018 - momentum: 0.000000
2023-10-14 18:47:50,424 epoch 5 - iter 2888/3617 - loss 0.03792790 - time (sec): 150.75 - samples/sec: 2021.21 - lr: 0.000017 - momentum: 0.000000
2023-10-14 18:48:09,228 epoch 5 - iter 3249/3617 - loss 0.03873215 - time (sec): 169.55 - samples/sec: 2022.58 - lr: 0.000017 - momentum: 0.000000
2023-10-14 18:48:28,017 epoch 5 - iter 3610/3617 - loss 0.03865296 - time (sec): 188.34 - samples/sec: 2013.85 - lr: 0.000017 - momentum: 0.000000
2023-10-14 18:48:28,376 ----------------------------------------------------------------------------------------------------
2023-10-14 18:48:28,377 EPOCH 5 done: loss 0.0386 - lr: 0.000017
2023-10-14 18:48:33,939 DEV : loss 0.32902124524116516 - f1-score (micro avg)  0.6482
2023-10-14 18:48:33,971 saving best model
2023-10-14 18:48:34,499 ----------------------------------------------------------------------------------------------------
2023-10-14 18:48:53,479 epoch 6 - iter 361/3617 - loss 0.02506183 - time (sec): 18.98 - samples/sec: 2000.72 - lr: 0.000016 - momentum: 0.000000
2023-10-14 18:49:12,488 epoch 6 - iter 722/3617 - loss 0.02531762 - time (sec): 37.98 - samples/sec: 1980.58 - lr: 0.000016 - momentum: 0.000000
2023-10-14 18:49:31,432 epoch 6 - iter 1083/3617 - loss 0.02644327 - time (sec): 56.93 - samples/sec: 1964.83 - lr: 0.000016 - momentum: 0.000000
2023-10-14 18:49:50,306 epoch 6 - iter 1444/3617 - loss 0.02682723 - time (sec): 75.80 - samples/sec: 1972.03 - lr: 0.000015 - momentum: 0.000000
2023-10-14 18:50:09,249 epoch 6 - iter 1805/3617 - loss 0.02642346 - time (sec): 94.75 - samples/sec: 1987.90 - lr: 0.000015 - momentum: 0.000000
2023-10-14 18:50:28,143 epoch 6 - iter 2166/3617 - loss 0.02688605 - time (sec): 113.64 - samples/sec: 1995.11 - lr: 0.000015 - momentum: 0.000000
2023-10-14 18:50:47,094 epoch 6 - iter 2527/3617 - loss 0.02597740 - time (sec): 132.59 - samples/sec: 1991.28 - lr: 0.000014 - momentum: 0.000000
2023-10-14 18:51:06,110 epoch 6 - iter 2888/3617 - loss 0.02657743 - time (sec): 151.61 - samples/sec: 2004.75 - lr: 0.000014 - momentum: 0.000000
2023-10-14 18:51:24,765 epoch 6 - iter 3249/3617 - loss 0.02701549 - time (sec): 170.26 - samples/sec: 2001.72 - lr: 0.000014 - momentum: 0.000000
2023-10-14 18:51:43,525 epoch 6 - iter 3610/3617 - loss 0.02721336 - time (sec): 189.02 - samples/sec: 2006.30 - lr: 0.000013 - momentum: 0.000000
2023-10-14 18:51:43,876 ----------------------------------------------------------------------------------------------------
2023-10-14 18:51:43,877 EPOCH 6 done: loss 0.0272 - lr: 0.000013
2023-10-14 18:51:50,080 DEV : loss 0.3020953834056854 - f1-score (micro avg)  0.6316
2023-10-14 18:51:50,109 ----------------------------------------------------------------------------------------------------
2023-10-14 18:52:09,031 epoch 7 - iter 361/3617 - loss 0.01566413 - time (sec): 18.92 - samples/sec: 2050.15 - lr: 0.000013 - momentum: 0.000000
2023-10-14 18:52:28,180 epoch 7 - iter 722/3617 - loss 0.01602060 - time (sec): 38.07 - samples/sec: 2024.60 - lr: 0.000013 - momentum: 0.000000
2023-10-14 18:52:47,111 epoch 7 - iter 1083/3617 - loss 0.01755375 - time (sec): 57.00 - samples/sec: 2017.47 - lr: 0.000012 - momentum: 0.000000
2023-10-14 18:53:05,964 epoch 7 - iter 1444/3617 - loss 0.01898152 - time (sec): 75.85 - samples/sec: 2014.71 - lr: 0.000012 - momentum: 0.000000
2023-10-14 18:53:24,801 epoch 7 - iter 1805/3617 - loss 0.02029282 - time (sec): 94.69 - samples/sec: 2013.35 - lr: 0.000012 - momentum: 0.000000
2023-10-14 18:53:43,723 epoch 7 - iter 2166/3617 - loss 0.01945143 - time (sec): 113.61 - samples/sec: 2011.18 - lr: 0.000011 - momentum: 0.000000
2023-10-14 18:54:02,484 epoch 7 - iter 2527/3617 - loss 0.02008824 - time (sec): 132.37 - samples/sec: 2009.24 - lr: 0.000011 - momentum: 0.000000
2023-10-14 18:54:21,323 epoch 7 - iter 2888/3617 - loss 0.02026028 - time (sec): 151.21 - samples/sec: 2011.04 - lr: 0.000011 - momentum: 0.000000
2023-10-14 18:54:40,125 epoch 7 - iter 3249/3617 - loss 0.02016038 - time (sec): 170.01 - samples/sec: 2007.85 - lr: 0.000010 - momentum: 0.000000
2023-10-14 18:54:58,847 epoch 7 - iter 3610/3617 - loss 0.02025047 - time (sec): 188.74 - samples/sec: 2009.28 - lr: 0.000010 - momentum: 0.000000
2023-10-14 18:54:59,208 ----------------------------------------------------------------------------------------------------
2023-10-14 18:54:59,209 EPOCH 7 done: loss 0.0203 - lr: 0.000010
2023-10-14 18:55:05,497 DEV : loss 0.33693569898605347 - f1-score (micro avg)  0.6245
2023-10-14 18:55:05,525 ----------------------------------------------------------------------------------------------------
2023-10-14 18:55:24,336 epoch 8 - iter 361/3617 - loss 0.01327463 - time (sec): 18.81 - samples/sec: 1964.88 - lr: 0.000010 - momentum: 0.000000
2023-10-14 18:55:43,223 epoch 8 - iter 722/3617 - loss 0.01473725 - time (sec): 37.70 - samples/sec: 1989.05 - lr: 0.000009 - momentum: 0.000000
2023-10-14 18:56:02,086 epoch 8 - iter 1083/3617 - loss 0.01272106 - time (sec): 56.56 - samples/sec: 2011.45 - lr: 0.000009 - momentum: 0.000000
2023-10-14 18:56:20,916 epoch 8 - iter 1444/3617 - loss 0.01306734 - time (sec): 75.39 - samples/sec: 2011.73 - lr: 0.000009 - momentum: 0.000000
2023-10-14 18:56:39,693 epoch 8 - iter 1805/3617 - loss 0.01336643 - time (sec): 94.17 - samples/sec: 2006.28 - lr: 0.000008 - momentum: 0.000000
2023-10-14 18:56:58,759 epoch 8 - iter 2166/3617 - loss 0.01331363 - time (sec): 113.23 - samples/sec: 1982.43 - lr: 0.000008 - momentum: 0.000000
2023-10-14 18:57:17,808 epoch 8 - iter 2527/3617 - loss 0.01360786 - time (sec): 132.28 - samples/sec: 1995.37 - lr: 0.000008 - momentum: 0.000000
2023-10-14 18:57:36,722 epoch 8 - iter 2888/3617 - loss 0.01309021 - time (sec): 151.20 - samples/sec: 1993.35 - lr: 0.000007 - momentum: 0.000000
2023-10-14 18:57:55,357 epoch 8 - iter 3249/3617 - loss 0.01286633 - time (sec): 169.83 - samples/sec: 2004.16 - lr: 0.000007 - momentum: 0.000000
2023-10-14 18:58:14,255 epoch 8 - iter 3610/3617 - loss 0.01337274 - time (sec): 188.73 - samples/sec: 2008.80 - lr: 0.000007 - momentum: 0.000000
2023-10-14 18:58:14,611 ----------------------------------------------------------------------------------------------------
2023-10-14 18:58:14,611 EPOCH 8 done: loss 0.0134 - lr: 0.000007
2023-10-14 18:58:20,871 DEV : loss 0.3728400766849518 - f1-score (micro avg)  0.6292
2023-10-14 18:58:20,900 ----------------------------------------------------------------------------------------------------
2023-10-14 18:58:39,836 epoch 9 - iter 361/3617 - loss 0.00636871 - time (sec): 18.93 - samples/sec: 2004.28 - lr: 0.000006 - momentum: 0.000000
2023-10-14 18:58:58,882 epoch 9 - iter 722/3617 - loss 0.00907563 - time (sec): 37.98 - samples/sec: 2028.07 - lr: 0.000006 - momentum: 0.000000
2023-10-14 18:59:17,616 epoch 9 - iter 1083/3617 - loss 0.00828252 - time (sec): 56.72 - samples/sec: 2036.27 - lr: 0.000006 - momentum: 0.000000
2023-10-14 18:59:36,465 epoch 9 - iter 1444/3617 - loss 0.00898628 - time (sec): 75.56 - samples/sec: 2012.65 - lr: 0.000005 - momentum: 0.000000
2023-10-14 18:59:55,560 epoch 9 - iter 1805/3617 - loss 0.00817358 - time (sec): 94.66 - samples/sec: 2003.84 - lr: 0.000005 - momentum: 0.000000
2023-10-14 19:00:14,343 epoch 9 - iter 2166/3617 - loss 0.00817291 - time (sec): 113.44 - samples/sec: 2002.35 - lr: 0.000005 - momentum: 0.000000
2023-10-14 19:00:33,183 epoch 9 - iter 2527/3617 - loss 0.00832167 - time (sec): 132.28 - samples/sec: 1994.85 - lr: 0.000004 - momentum: 0.000000
2023-10-14 19:00:52,035 epoch 9 - iter 2888/3617 - loss 0.00797829 - time (sec): 151.13 - samples/sec: 1996.91 - lr: 0.000004 - momentum: 0.000000
2023-10-14 19:01:10,800 epoch 9 - iter 3249/3617 - loss 0.00799275 - time (sec): 169.90 - samples/sec: 2003.98 - lr: 0.000004 - momentum: 0.000000
2023-10-14 19:01:30,189 epoch 9 - iter 3610/3617 - loss 0.00795879 - time (sec): 189.29 - samples/sec: 2003.69 - lr: 0.000003 - momentum: 0.000000
2023-10-14 19:01:30,546 ----------------------------------------------------------------------------------------------------
2023-10-14 19:01:30,546 EPOCH 9 done: loss 0.0079 - lr: 0.000003
2023-10-14 19:01:36,746 DEV : loss 0.3810341954231262 - f1-score (micro avg)  0.6453
2023-10-14 19:01:36,775 ----------------------------------------------------------------------------------------------------
2023-10-14 19:01:55,572 epoch 10 - iter 361/3617 - loss 0.00233359 - time (sec): 18.80 - samples/sec: 2041.41 - lr: 0.000003 - momentum: 0.000000
2023-10-14 19:02:12,702 epoch 10 - iter 722/3617 - loss 0.00511219 - time (sec): 35.93 - samples/sec: 2151.13 - lr: 0.000003 - momentum: 0.000000
2023-10-14 19:02:29,091 epoch 10 - iter 1083/3617 - loss 0.00547615 - time (sec): 52.32 - samples/sec: 2185.00 - lr: 0.000002 - momentum: 0.000000
2023-10-14 19:02:45,447 epoch 10 - iter 1444/3617 - loss 0.00486842 - time (sec): 68.67 - samples/sec: 2216.76 - lr: 0.000002 - momentum: 0.000000
2023-10-14 19:03:02,177 epoch 10 - iter 1805/3617 - loss 0.00509004 - time (sec): 85.40 - samples/sec: 2231.64 - lr: 0.000002 - momentum: 0.000000
2023-10-14 19:03:19,019 epoch 10 - iter 2166/3617 - loss 0.00541113 - time (sec): 102.24 - samples/sec: 2238.08 - lr: 0.000001 - momentum: 0.000000
2023-10-14 19:03:35,397 epoch 10 - iter 2527/3617 - loss 0.00522420 - time (sec): 118.62 - samples/sec: 2236.37 - lr: 0.000001 - momentum: 0.000000
2023-10-14 19:03:51,652 epoch 10 - iter 2888/3617 - loss 0.00553422 - time (sec): 134.88 - samples/sec: 2230.99 - lr: 0.000001 - momentum: 0.000000
2023-10-14 19:04:08,143 epoch 10 - iter 3249/3617 - loss 0.00538172 - time (sec): 151.37 - samples/sec: 2243.70 - lr: 0.000000 - momentum: 0.000000
2023-10-14 19:04:24,734 epoch 10 - iter 3610/3617 - loss 0.00535691 - time (sec): 167.96 - samples/sec: 2258.53 - lr: 0.000000 - momentum: 0.000000
2023-10-14 19:04:25,047 ----------------------------------------------------------------------------------------------------
2023-10-14 19:04:25,047 EPOCH 10 done: loss 0.0053 - lr: 0.000000
2023-10-14 19:04:30,571 DEV : loss 0.395516961812973 - f1-score (micro avg)  0.6422
2023-10-14 19:04:31,008 ----------------------------------------------------------------------------------------------------
2023-10-14 19:04:31,009 Loading model from best epoch ...
2023-10-14 19:04:33,509 SequenceTagger predicts: Dictionary with 13 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org
2023-10-14 19:04:40,299 
Results:
- F-score (micro) 0.6431
- F-score (macro) 0.5165
- Accuracy 0.4908

By class:
              precision    recall  f1-score   support

         loc     0.6159    0.7868    0.6909       591
        pers     0.5281    0.8151    0.6410       357
         org     0.2353    0.2025    0.2177        79

   micro avg     0.5619    0.7517    0.6431      1027
   macro avg     0.4598    0.6015    0.5165      1027
weighted avg     0.5561    0.7517    0.6372      1027

2023-10-14 19:04:40,299 ----------------------------------------------------------------------------------------------------