|
2023-10-17 18:51:00,787 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:00,788 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): ElectraModel( |
|
(embeddings): ElectraEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): ElectraEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x ElectraLayer( |
|
(attention): ElectraAttention( |
|
(self): ElectraSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): ElectraSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): ElectraIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): ElectraOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=13, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-17 18:51:00,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:00,788 MultiCorpus: 5777 train + 722 dev + 723 test sentences |
|
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl |
|
2023-10-17 18:51:00,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:00,788 Train: 5777 sentences |
|
2023-10-17 18:51:00,788 (train_with_dev=False, train_with_test=False) |
|
2023-10-17 18:51:00,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:00,788 Training Params: |
|
2023-10-17 18:51:00,788 - learning_rate: "3e-05" |
|
2023-10-17 18:51:00,788 - mini_batch_size: "8" |
|
2023-10-17 18:51:00,788 - max_epochs: "10" |
|
2023-10-17 18:51:00,788 - shuffle: "True" |
|
2023-10-17 18:51:00,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:00,788 Plugins: |
|
2023-10-17 18:51:00,788 - TensorboardLogger |
|
2023-10-17 18:51:00,788 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-17 18:51:00,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:00,788 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-17 18:51:00,788 - metric: "('micro avg', 'f1-score')" |
|
2023-10-17 18:51:00,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:00,788 Computation: |
|
2023-10-17 18:51:00,788 - compute on device: cuda:0 |
|
2023-10-17 18:51:00,788 - embedding storage: none |
|
2023-10-17 18:51:00,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:00,788 Model training base path: "hmbench-icdar/nl-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5" |
|
2023-10-17 18:51:00,788 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:00,789 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:00,789 Logging anything other than scalars to TensorBoard is currently not supported. |
|
2023-10-17 18:51:05,999 epoch 1 - iter 72/723 - loss 2.73572129 - time (sec): 5.21 - samples/sec: 3228.40 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 18:51:11,090 epoch 1 - iter 144/723 - loss 1.71636677 - time (sec): 10.30 - samples/sec: 3297.56 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 18:51:16,224 epoch 1 - iter 216/723 - loss 1.21015689 - time (sec): 15.43 - samples/sec: 3319.86 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 18:51:21,390 epoch 1 - iter 288/723 - loss 0.94420268 - time (sec): 20.60 - samples/sec: 3347.59 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 18:51:26,193 epoch 1 - iter 360/723 - loss 0.78590918 - time (sec): 25.40 - samples/sec: 3395.27 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 18:51:31,477 epoch 1 - iter 432/723 - loss 0.67292077 - time (sec): 30.69 - samples/sec: 3400.44 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 18:51:36,674 epoch 1 - iter 504/723 - loss 0.59756926 - time (sec): 35.88 - samples/sec: 3400.07 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 18:51:42,043 epoch 1 - iter 576/723 - loss 0.53717802 - time (sec): 41.25 - samples/sec: 3387.98 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 18:51:47,518 epoch 1 - iter 648/723 - loss 0.48924915 - time (sec): 46.73 - samples/sec: 3371.37 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 18:51:52,896 epoch 1 - iter 720/723 - loss 0.45323298 - time (sec): 52.11 - samples/sec: 3367.96 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 18:51:53,104 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:51:53,105 EPOCH 1 done: loss 0.4518 - lr: 0.000030 |
|
2023-10-17 18:51:55,813 DEV : loss 0.08571955561637878 - f1-score (micro avg) 0.7621 |
|
2023-10-17 18:51:55,830 saving best model |
|
2023-10-17 18:51:56,351 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:52:01,211 epoch 2 - iter 72/723 - loss 0.09693799 - time (sec): 4.86 - samples/sec: 3414.32 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-17 18:52:06,705 epoch 2 - iter 144/723 - loss 0.09826077 - time (sec): 10.35 - samples/sec: 3307.89 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 18:52:11,708 epoch 2 - iter 216/723 - loss 0.09503249 - time (sec): 15.36 - samples/sec: 3367.88 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 18:52:16,853 epoch 2 - iter 288/723 - loss 0.09891978 - time (sec): 20.50 - samples/sec: 3362.88 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-17 18:52:22,304 epoch 2 - iter 360/723 - loss 0.09274178 - time (sec): 25.95 - samples/sec: 3380.81 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 18:52:27,873 epoch 2 - iter 432/723 - loss 0.08927963 - time (sec): 31.52 - samples/sec: 3401.91 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 18:52:32,724 epoch 2 - iter 504/723 - loss 0.09084334 - time (sec): 36.37 - samples/sec: 3381.60 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-17 18:52:38,353 epoch 2 - iter 576/723 - loss 0.09010738 - time (sec): 42.00 - samples/sec: 3375.35 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 18:52:43,617 epoch 2 - iter 648/723 - loss 0.08974176 - time (sec): 47.26 - samples/sec: 3348.81 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 18:52:48,857 epoch 2 - iter 720/723 - loss 0.08723098 - time (sec): 52.50 - samples/sec: 3343.67 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-17 18:52:49,018 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:52:49,019 EPOCH 2 done: loss 0.0871 - lr: 0.000027 |
|
2023-10-17 18:52:52,238 DEV : loss 0.05628642439842224 - f1-score (micro avg) 0.8664 |
|
2023-10-17 18:52:52,255 saving best model |
|
2023-10-17 18:52:52,649 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:52:58,275 epoch 3 - iter 72/723 - loss 0.06108376 - time (sec): 5.62 - samples/sec: 3077.41 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 18:53:03,076 epoch 3 - iter 144/723 - loss 0.06229454 - time (sec): 10.43 - samples/sec: 3255.95 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 18:53:08,621 epoch 3 - iter 216/723 - loss 0.06269040 - time (sec): 15.97 - samples/sec: 3261.71 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-17 18:53:14,059 epoch 3 - iter 288/723 - loss 0.05782452 - time (sec): 21.41 - samples/sec: 3273.63 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 18:53:19,376 epoch 3 - iter 360/723 - loss 0.05776341 - time (sec): 26.73 - samples/sec: 3305.07 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 18:53:24,787 epoch 3 - iter 432/723 - loss 0.06112370 - time (sec): 32.14 - samples/sec: 3288.95 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-17 18:53:29,871 epoch 3 - iter 504/723 - loss 0.06276585 - time (sec): 37.22 - samples/sec: 3302.02 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 18:53:35,301 epoch 3 - iter 576/723 - loss 0.06100180 - time (sec): 42.65 - samples/sec: 3318.70 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 18:53:40,357 epoch 3 - iter 648/723 - loss 0.06087244 - time (sec): 47.71 - samples/sec: 3323.88 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-17 18:53:45,595 epoch 3 - iter 720/723 - loss 0.06067803 - time (sec): 52.94 - samples/sec: 3316.47 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 18:53:45,776 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:53:45,777 EPOCH 3 done: loss 0.0606 - lr: 0.000023 |
|
2023-10-17 18:53:48,994 DEV : loss 0.061015695333480835 - f1-score (micro avg) 0.8829 |
|
2023-10-17 18:53:49,010 saving best model |
|
2023-10-17 18:53:49,436 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:53:54,717 epoch 4 - iter 72/723 - loss 0.04387038 - time (sec): 5.28 - samples/sec: 3489.64 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 18:54:00,075 epoch 4 - iter 144/723 - loss 0.03977768 - time (sec): 10.64 - samples/sec: 3434.68 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-17 18:54:05,046 epoch 4 - iter 216/723 - loss 0.04174055 - time (sec): 15.61 - samples/sec: 3394.76 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 18:54:10,454 epoch 4 - iter 288/723 - loss 0.04295155 - time (sec): 21.02 - samples/sec: 3371.28 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 18:54:15,352 epoch 4 - iter 360/723 - loss 0.04184529 - time (sec): 25.92 - samples/sec: 3370.25 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-17 18:54:20,627 epoch 4 - iter 432/723 - loss 0.04216528 - time (sec): 31.19 - samples/sec: 3358.32 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 18:54:25,677 epoch 4 - iter 504/723 - loss 0.04174425 - time (sec): 36.24 - samples/sec: 3385.08 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 18:54:31,093 epoch 4 - iter 576/723 - loss 0.04256262 - time (sec): 41.66 - samples/sec: 3366.49 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-17 18:54:36,301 epoch 4 - iter 648/723 - loss 0.04255295 - time (sec): 46.86 - samples/sec: 3360.15 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 18:54:41,551 epoch 4 - iter 720/723 - loss 0.04326055 - time (sec): 52.11 - samples/sec: 3372.14 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 18:54:41,713 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:54:41,713 EPOCH 4 done: loss 0.0432 - lr: 0.000020 |
|
2023-10-17 18:54:45,293 DEV : loss 0.07059507817029953 - f1-score (micro avg) 0.8652 |
|
2023-10-17 18:54:45,309 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:54:50,582 epoch 5 - iter 72/723 - loss 0.03765946 - time (sec): 5.27 - samples/sec: 3200.52 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-17 18:54:55,435 epoch 5 - iter 144/723 - loss 0.03376893 - time (sec): 10.12 - samples/sec: 3269.32 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 18:55:01,381 epoch 5 - iter 216/723 - loss 0.03444213 - time (sec): 16.07 - samples/sec: 3259.98 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 18:55:06,439 epoch 5 - iter 288/723 - loss 0.03201450 - time (sec): 21.13 - samples/sec: 3278.94 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-17 18:55:11,837 epoch 5 - iter 360/723 - loss 0.03021248 - time (sec): 26.53 - samples/sec: 3268.82 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 18:55:17,061 epoch 5 - iter 432/723 - loss 0.03095066 - time (sec): 31.75 - samples/sec: 3295.73 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 18:55:22,311 epoch 5 - iter 504/723 - loss 0.03205508 - time (sec): 37.00 - samples/sec: 3318.65 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-17 18:55:27,501 epoch 5 - iter 576/723 - loss 0.03251336 - time (sec): 42.19 - samples/sec: 3325.42 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 18:55:32,561 epoch 5 - iter 648/723 - loss 0.03276588 - time (sec): 47.25 - samples/sec: 3329.33 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 18:55:37,985 epoch 5 - iter 720/723 - loss 0.03238438 - time (sec): 52.67 - samples/sec: 3338.39 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-17 18:55:38,138 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:55:38,139 EPOCH 5 done: loss 0.0324 - lr: 0.000017 |
|
2023-10-17 18:55:41,451 DEV : loss 0.07911184430122375 - f1-score (micro avg) 0.8697 |
|
2023-10-17 18:55:41,469 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:55:46,855 epoch 6 - iter 72/723 - loss 0.01939646 - time (sec): 5.38 - samples/sec: 3381.89 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 18:55:52,097 epoch 6 - iter 144/723 - loss 0.02202295 - time (sec): 10.63 - samples/sec: 3376.79 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 18:55:57,312 epoch 6 - iter 216/723 - loss 0.02329081 - time (sec): 15.84 - samples/sec: 3385.10 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-17 18:56:03,153 epoch 6 - iter 288/723 - loss 0.02709437 - time (sec): 21.68 - samples/sec: 3284.61 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 18:56:08,569 epoch 6 - iter 360/723 - loss 0.02852147 - time (sec): 27.10 - samples/sec: 3309.49 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 18:56:13,824 epoch 6 - iter 432/723 - loss 0.02704669 - time (sec): 32.35 - samples/sec: 3322.19 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-17 18:56:18,846 epoch 6 - iter 504/723 - loss 0.02698341 - time (sec): 37.38 - samples/sec: 3337.29 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 18:56:23,707 epoch 6 - iter 576/723 - loss 0.02713054 - time (sec): 42.24 - samples/sec: 3344.91 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 18:56:28,856 epoch 6 - iter 648/723 - loss 0.02638017 - time (sec): 47.38 - samples/sec: 3348.51 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-17 18:56:33,896 epoch 6 - iter 720/723 - loss 0.02633353 - time (sec): 52.43 - samples/sec: 3352.29 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 18:56:34,069 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:56:34,069 EPOCH 6 done: loss 0.0263 - lr: 0.000013 |
|
2023-10-17 18:56:37,242 DEV : loss 0.08742444217205048 - f1-score (micro avg) 0.8809 |
|
2023-10-17 18:56:37,259 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:56:42,537 epoch 7 - iter 72/723 - loss 0.01010414 - time (sec): 5.28 - samples/sec: 3350.03 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 18:56:47,589 epoch 7 - iter 144/723 - loss 0.01933338 - time (sec): 10.33 - samples/sec: 3321.61 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-17 18:56:53,263 epoch 7 - iter 216/723 - loss 0.01860946 - time (sec): 16.00 - samples/sec: 3316.41 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 18:56:58,767 epoch 7 - iter 288/723 - loss 0.01987477 - time (sec): 21.51 - samples/sec: 3329.15 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 18:57:04,192 epoch 7 - iter 360/723 - loss 0.01978143 - time (sec): 26.93 - samples/sec: 3325.96 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-17 18:57:09,642 epoch 7 - iter 432/723 - loss 0.02023814 - time (sec): 32.38 - samples/sec: 3310.10 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 18:57:14,799 epoch 7 - iter 504/723 - loss 0.01949429 - time (sec): 37.54 - samples/sec: 3315.96 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 18:57:19,826 epoch 7 - iter 576/723 - loss 0.01865648 - time (sec): 42.57 - samples/sec: 3327.50 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-17 18:57:24,812 epoch 7 - iter 648/723 - loss 0.01853140 - time (sec): 47.55 - samples/sec: 3333.24 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 18:57:30,046 epoch 7 - iter 720/723 - loss 0.01839669 - time (sec): 52.79 - samples/sec: 3328.86 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 18:57:30,201 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:57:30,201 EPOCH 7 done: loss 0.0184 - lr: 0.000010 |
|
2023-10-17 18:57:33,757 DEV : loss 0.10578546673059464 - f1-score (micro avg) 0.8809 |
|
2023-10-17 18:57:33,774 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:57:38,932 epoch 8 - iter 72/723 - loss 0.00841995 - time (sec): 5.16 - samples/sec: 3443.43 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-17 18:57:44,074 epoch 8 - iter 144/723 - loss 0.01229420 - time (sec): 10.30 - samples/sec: 3426.89 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 18:57:49,096 epoch 8 - iter 216/723 - loss 0.01355410 - time (sec): 15.32 - samples/sec: 3395.51 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 18:57:54,305 epoch 8 - iter 288/723 - loss 0.01394882 - time (sec): 20.53 - samples/sec: 3385.90 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-17 18:57:59,323 epoch 8 - iter 360/723 - loss 0.01323447 - time (sec): 25.55 - samples/sec: 3374.12 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 18:58:04,498 epoch 8 - iter 432/723 - loss 0.01270974 - time (sec): 30.72 - samples/sec: 3377.16 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 18:58:09,812 epoch 8 - iter 504/723 - loss 0.01255571 - time (sec): 36.04 - samples/sec: 3355.95 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-17 18:58:15,497 epoch 8 - iter 576/723 - loss 0.01341256 - time (sec): 41.72 - samples/sec: 3360.99 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 18:58:20,693 epoch 8 - iter 648/723 - loss 0.01371160 - time (sec): 46.92 - samples/sec: 3357.01 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 18:58:26,278 epoch 8 - iter 720/723 - loss 0.01394702 - time (sec): 52.50 - samples/sec: 3344.06 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-17 18:58:26,474 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:58:26,474 EPOCH 8 done: loss 0.0139 - lr: 0.000007 |
|
2023-10-17 18:58:29,679 DEV : loss 0.11371435225009918 - f1-score (micro avg) 0.8805 |
|
2023-10-17 18:58:29,695 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:58:35,055 epoch 9 - iter 72/723 - loss 0.01003235 - time (sec): 5.36 - samples/sec: 3286.54 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 18:58:40,336 epoch 9 - iter 144/723 - loss 0.00981857 - time (sec): 10.64 - samples/sec: 3403.11 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 18:58:45,118 epoch 9 - iter 216/723 - loss 0.01076096 - time (sec): 15.42 - samples/sec: 3432.99 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-17 18:58:50,044 epoch 9 - iter 288/723 - loss 0.01027158 - time (sec): 20.35 - samples/sec: 3464.18 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 18:58:55,521 epoch 9 - iter 360/723 - loss 0.00989332 - time (sec): 25.82 - samples/sec: 3429.30 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 18:59:00,544 epoch 9 - iter 432/723 - loss 0.00992623 - time (sec): 30.85 - samples/sec: 3432.33 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-17 18:59:06,392 epoch 9 - iter 504/723 - loss 0.01080183 - time (sec): 36.70 - samples/sec: 3398.02 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 18:59:11,482 epoch 9 - iter 576/723 - loss 0.01069467 - time (sec): 41.79 - samples/sec: 3391.20 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 18:59:16,665 epoch 9 - iter 648/723 - loss 0.01087289 - time (sec): 46.97 - samples/sec: 3403.56 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-17 18:59:21,382 epoch 9 - iter 720/723 - loss 0.01170845 - time (sec): 51.69 - samples/sec: 3401.34 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 18:59:21,537 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:59:21,537 EPOCH 9 done: loss 0.0117 - lr: 0.000003 |
|
2023-10-17 18:59:24,756 DEV : loss 0.11608566343784332 - f1-score (micro avg) 0.8813 |
|
2023-10-17 18:59:24,773 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 18:59:30,213 epoch 10 - iter 72/723 - loss 0.01498393 - time (sec): 5.44 - samples/sec: 3305.97 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 18:59:35,092 epoch 10 - iter 144/723 - loss 0.00950962 - time (sec): 10.32 - samples/sec: 3395.52 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-17 18:59:40,454 epoch 10 - iter 216/723 - loss 0.00882272 - time (sec): 15.68 - samples/sec: 3373.59 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 18:59:45,853 epoch 10 - iter 288/723 - loss 0.00879424 - time (sec): 21.08 - samples/sec: 3350.52 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 18:59:50,927 epoch 10 - iter 360/723 - loss 0.00903110 - time (sec): 26.15 - samples/sec: 3359.20 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-17 18:59:56,386 epoch 10 - iter 432/723 - loss 0.00841109 - time (sec): 31.61 - samples/sec: 3355.32 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 19:00:01,775 epoch 10 - iter 504/723 - loss 0.00806376 - time (sec): 37.00 - samples/sec: 3325.43 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 19:00:06,842 epoch 10 - iter 576/723 - loss 0.00790310 - time (sec): 42.07 - samples/sec: 3324.90 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-17 19:00:12,025 epoch 10 - iter 648/723 - loss 0.00804525 - time (sec): 47.25 - samples/sec: 3339.23 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 19:00:17,383 epoch 10 - iter 720/723 - loss 0.00796014 - time (sec): 52.61 - samples/sec: 3342.17 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-17 19:00:17,532 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 19:00:17,533 EPOCH 10 done: loss 0.0079 - lr: 0.000000 |
|
2023-10-17 19:00:21,687 DEV : loss 0.12145841866731644 - f1-score (micro avg) 0.8792 |
|
2023-10-17 19:00:22,119 ---------------------------------------------------------------------------------------------------- |
|
2023-10-17 19:00:22,121 Loading model from best epoch ... |
|
2023-10-17 19:00:23,863 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG |
|
2023-10-17 19:00:27,596 |
|
Results: |
|
- F-score (micro) 0.8643 |
|
- F-score (macro) 0.7231 |
|
- Accuracy 0.7673 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
PER 0.8669 0.8651 0.8660 482 |
|
LOC 0.9509 0.8886 0.9187 458 |
|
ORG 0.5714 0.2899 0.3846 69 |
|
|
|
micro avg 0.8941 0.8365 0.8643 1009 |
|
macro avg 0.7964 0.6812 0.7231 1009 |
|
weighted avg 0.8849 0.8365 0.8570 1009 |
|
|
|
2023-10-17 19:00:27,596 ---------------------------------------------------------------------------------------------------- |
|
|