Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697563082.bce904bcef33.2251.10 +3 -0
- test.tsv +0 -0
- training.log +236 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:125da4dda7e79b6350a713a7f468034522b93ca7531610bb9d923e4a5cf11c60
|
3 |
+
size 440941957
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 17:18:58 0.0000 0.4834 0.0916 0.8135 0.7345 0.7720 0.6320
|
3 |
+
2 17:19:55 0.0000 0.0855 0.0799 0.9033 0.7335 0.8096 0.6860
|
4 |
+
3 17:20:52 0.0000 0.0595 0.0589 0.8678 0.8812 0.8744 0.7847
|
5 |
+
4 17:21:48 0.0000 0.0441 0.0596 0.8982 0.8481 0.8725 0.7834
|
6 |
+
5 17:22:44 0.0000 0.0328 0.0892 0.8917 0.8254 0.8573 0.7617
|
7 |
+
6 17:23:40 0.0000 0.0254 0.1065 0.9086 0.7903 0.8453 0.7406
|
8 |
+
7 17:24:38 0.0000 0.0186 0.1209 0.9077 0.8233 0.8635 0.7671
|
9 |
+
8 17:25:34 0.0000 0.0142 0.1118 0.8975 0.8502 0.8732 0.7838
|
10 |
+
9 17:26:30 0.0000 0.0093 0.1297 0.8982 0.8481 0.8725 0.7827
|
11 |
+
10 17:27:27 0.0000 0.0071 0.1300 0.9021 0.8378 0.8688 0.7753
|
runs/events.out.tfevents.1697563082.bce904bcef33.2251.10
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c9439ced0b63dc2dc5274e78ceea54aa1480ce4f666adc8dfce4cdacaa53fe8
|
3 |
+
size 407048
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 17:18:02,748 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 17:18:02,749 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 17:18:02,749 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 17:18:02,749 MultiCorpus: 5777 train + 722 dev + 723 test sentences
|
48 |
+
- NER_ICDAR_EUROPEANA Corpus: 5777 train + 722 dev + 723 test sentences - /root/.flair/datasets/ner_icdar_europeana/nl
|
49 |
+
2023-10-17 17:18:02,749 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 17:18:02,749 Train: 5777 sentences
|
51 |
+
2023-10-17 17:18:02,749 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 17:18:02,749 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 17:18:02,749 Training Params:
|
54 |
+
2023-10-17 17:18:02,749 - learning_rate: "3e-05"
|
55 |
+
2023-10-17 17:18:02,749 - mini_batch_size: "8"
|
56 |
+
2023-10-17 17:18:02,749 - max_epochs: "10"
|
57 |
+
2023-10-17 17:18:02,749 - shuffle: "True"
|
58 |
+
2023-10-17 17:18:02,749 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 17:18:02,749 Plugins:
|
60 |
+
2023-10-17 17:18:02,749 - TensorboardLogger
|
61 |
+
2023-10-17 17:18:02,749 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 17:18:02,749 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 17:18:02,749 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 17:18:02,750 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 17:18:02,750 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 17:18:02,750 Computation:
|
67 |
+
2023-10-17 17:18:02,750 - compute on device: cuda:0
|
68 |
+
2023-10-17 17:18:02,750 - embedding storage: none
|
69 |
+
2023-10-17 17:18:02,750 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 17:18:02,750 Model training base path: "hmbench-icdar/nl-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
|
71 |
+
2023-10-17 17:18:02,750 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 17:18:02,750 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 17:18:02,750 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 17:18:07,968 epoch 1 - iter 72/723 - loss 2.92821673 - time (sec): 5.22 - samples/sec: 3292.93 - lr: 0.000003 - momentum: 0.000000
|
75 |
+
2023-10-17 17:18:13,496 epoch 1 - iter 144/723 - loss 1.89319940 - time (sec): 10.75 - samples/sec: 3167.75 - lr: 0.000006 - momentum: 0.000000
|
76 |
+
2023-10-17 17:18:18,433 epoch 1 - iter 216/723 - loss 1.32058159 - time (sec): 15.68 - samples/sec: 3297.96 - lr: 0.000009 - momentum: 0.000000
|
77 |
+
2023-10-17 17:18:23,739 epoch 1 - iter 288/723 - loss 1.03686421 - time (sec): 20.99 - samples/sec: 3311.38 - lr: 0.000012 - momentum: 0.000000
|
78 |
+
2023-10-17 17:18:29,178 epoch 1 - iter 360/723 - loss 0.84817600 - time (sec): 26.43 - samples/sec: 3337.99 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-17 17:18:34,423 epoch 1 - iter 432/723 - loss 0.72455943 - time (sec): 31.67 - samples/sec: 3362.64 - lr: 0.000018 - momentum: 0.000000
|
80 |
+
2023-10-17 17:18:39,508 epoch 1 - iter 504/723 - loss 0.63851899 - time (sec): 36.76 - samples/sec: 3367.76 - lr: 0.000021 - momentum: 0.000000
|
81 |
+
2023-10-17 17:18:44,724 epoch 1 - iter 576/723 - loss 0.57388505 - time (sec): 41.97 - samples/sec: 3368.99 - lr: 0.000024 - momentum: 0.000000
|
82 |
+
2023-10-17 17:18:49,488 epoch 1 - iter 648/723 - loss 0.52952118 - time (sec): 46.74 - samples/sec: 3359.70 - lr: 0.000027 - momentum: 0.000000
|
83 |
+
2023-10-17 17:18:54,674 epoch 1 - iter 720/723 - loss 0.48526860 - time (sec): 51.92 - samples/sec: 3378.76 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-17 17:18:54,959 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 17:18:54,959 EPOCH 1 done: loss 0.4834 - lr: 0.000030
|
86 |
+
2023-10-17 17:18:58,198 DEV : loss 0.09162620455026627 - f1-score (micro avg) 0.772
|
87 |
+
2023-10-17 17:18:58,220 saving best model
|
88 |
+
2023-10-17 17:18:58,619 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 17:19:03,898 epoch 2 - iter 72/723 - loss 0.08263348 - time (sec): 5.28 - samples/sec: 3288.51 - lr: 0.000030 - momentum: 0.000000
|
90 |
+
2023-10-17 17:19:09,170 epoch 2 - iter 144/723 - loss 0.09517055 - time (sec): 10.55 - samples/sec: 3297.74 - lr: 0.000029 - momentum: 0.000000
|
91 |
+
2023-10-17 17:19:14,153 epoch 2 - iter 216/723 - loss 0.09988608 - time (sec): 15.53 - samples/sec: 3333.60 - lr: 0.000029 - momentum: 0.000000
|
92 |
+
2023-10-17 17:19:19,327 epoch 2 - iter 288/723 - loss 0.09627162 - time (sec): 20.71 - samples/sec: 3336.49 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-17 17:19:24,981 epoch 2 - iter 360/723 - loss 0.09485556 - time (sec): 26.36 - samples/sec: 3334.24 - lr: 0.000028 - momentum: 0.000000
|
94 |
+
2023-10-17 17:19:31,183 epoch 2 - iter 432/723 - loss 0.09259966 - time (sec): 32.56 - samples/sec: 3304.35 - lr: 0.000028 - momentum: 0.000000
|
95 |
+
2023-10-17 17:19:36,309 epoch 2 - iter 504/723 - loss 0.09012823 - time (sec): 37.69 - samples/sec: 3323.07 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-17 17:19:41,244 epoch 2 - iter 576/723 - loss 0.08785448 - time (sec): 42.62 - samples/sec: 3334.29 - lr: 0.000027 - momentum: 0.000000
|
97 |
+
2023-10-17 17:19:46,438 epoch 2 - iter 648/723 - loss 0.08710096 - time (sec): 47.82 - samples/sec: 3318.09 - lr: 0.000027 - momentum: 0.000000
|
98 |
+
2023-10-17 17:19:51,687 epoch 2 - iter 720/723 - loss 0.08553578 - time (sec): 53.07 - samples/sec: 3307.76 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-17 17:19:51,866 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 17:19:51,867 EPOCH 2 done: loss 0.0855 - lr: 0.000027
|
101 |
+
2023-10-17 17:19:55,303 DEV : loss 0.07994066923856735 - f1-score (micro avg) 0.8096
|
102 |
+
2023-10-17 17:19:55,325 saving best model
|
103 |
+
2023-10-17 17:19:56,010 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 17:20:01,368 epoch 3 - iter 72/723 - loss 0.07121149 - time (sec): 5.36 - samples/sec: 3245.54 - lr: 0.000026 - momentum: 0.000000
|
105 |
+
2023-10-17 17:20:07,264 epoch 3 - iter 144/723 - loss 0.06286836 - time (sec): 11.25 - samples/sec: 3188.58 - lr: 0.000026 - momentum: 0.000000
|
106 |
+
2023-10-17 17:20:12,469 epoch 3 - iter 216/723 - loss 0.06127686 - time (sec): 16.46 - samples/sec: 3295.23 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-17 17:20:17,584 epoch 3 - iter 288/723 - loss 0.05764282 - time (sec): 21.57 - samples/sec: 3336.95 - lr: 0.000025 - momentum: 0.000000
|
108 |
+
2023-10-17 17:20:22,398 epoch 3 - iter 360/723 - loss 0.05703678 - time (sec): 26.39 - samples/sec: 3351.17 - lr: 0.000025 - momentum: 0.000000
|
109 |
+
2023-10-17 17:20:27,635 epoch 3 - iter 432/723 - loss 0.05805135 - time (sec): 31.62 - samples/sec: 3369.77 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-17 17:20:33,178 epoch 3 - iter 504/723 - loss 0.05996212 - time (sec): 37.17 - samples/sec: 3349.78 - lr: 0.000024 - momentum: 0.000000
|
111 |
+
2023-10-17 17:20:38,081 epoch 3 - iter 576/723 - loss 0.05992057 - time (sec): 42.07 - samples/sec: 3355.15 - lr: 0.000024 - momentum: 0.000000
|
112 |
+
2023-10-17 17:20:43,349 epoch 3 - iter 648/723 - loss 0.05949413 - time (sec): 47.34 - samples/sec: 3343.73 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-17 17:20:48,602 epoch 3 - iter 720/723 - loss 0.05955426 - time (sec): 52.59 - samples/sec: 3345.25 - lr: 0.000023 - momentum: 0.000000
|
114 |
+
2023-10-17 17:20:48,758 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 17:20:48,758 EPOCH 3 done: loss 0.0595 - lr: 0.000023
|
116 |
+
2023-10-17 17:20:52,178 DEV : loss 0.058894336223602295 - f1-score (micro avg) 0.8744
|
117 |
+
2023-10-17 17:20:52,208 saving best model
|
118 |
+
2023-10-17 17:20:52,731 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 17:20:57,764 epoch 4 - iter 72/723 - loss 0.04355367 - time (sec): 5.03 - samples/sec: 3320.09 - lr: 0.000023 - momentum: 0.000000
|
120 |
+
2023-10-17 17:21:03,407 epoch 4 - iter 144/723 - loss 0.04290886 - time (sec): 10.67 - samples/sec: 3246.22 - lr: 0.000023 - momentum: 0.000000
|
121 |
+
2023-10-17 17:21:08,387 epoch 4 - iter 216/723 - loss 0.04393652 - time (sec): 15.65 - samples/sec: 3306.63 - lr: 0.000022 - momentum: 0.000000
|
122 |
+
2023-10-17 17:21:13,715 epoch 4 - iter 288/723 - loss 0.04557269 - time (sec): 20.98 - samples/sec: 3300.10 - lr: 0.000022 - momentum: 0.000000
|
123 |
+
2023-10-17 17:21:18,664 epoch 4 - iter 360/723 - loss 0.04428411 - time (sec): 25.93 - samples/sec: 3328.19 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-17 17:21:23,819 epoch 4 - iter 432/723 - loss 0.04366172 - time (sec): 31.08 - samples/sec: 3342.24 - lr: 0.000021 - momentum: 0.000000
|
125 |
+
2023-10-17 17:21:29,071 epoch 4 - iter 504/723 - loss 0.04336719 - time (sec): 36.34 - samples/sec: 3350.79 - lr: 0.000021 - momentum: 0.000000
|
126 |
+
2023-10-17 17:21:34,728 epoch 4 - iter 576/723 - loss 0.04464133 - time (sec): 41.99 - samples/sec: 3357.04 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-17 17:21:39,750 epoch 4 - iter 648/723 - loss 0.04399677 - time (sec): 47.01 - samples/sec: 3359.57 - lr: 0.000020 - momentum: 0.000000
|
128 |
+
2023-10-17 17:21:44,913 epoch 4 - iter 720/723 - loss 0.04409540 - time (sec): 52.18 - samples/sec: 3368.25 - lr: 0.000020 - momentum: 0.000000
|
129 |
+
2023-10-17 17:21:45,083 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 17:21:45,084 EPOCH 4 done: loss 0.0441 - lr: 0.000020
|
131 |
+
2023-10-17 17:21:48,784 DEV : loss 0.05959029123187065 - f1-score (micro avg) 0.8725
|
132 |
+
2023-10-17 17:21:48,804 ----------------------------------------------------------------------------------------------------
|
133 |
+
2023-10-17 17:21:54,022 epoch 5 - iter 72/723 - loss 0.02878262 - time (sec): 5.22 - samples/sec: 3441.74 - lr: 0.000020 - momentum: 0.000000
|
134 |
+
2023-10-17 17:21:58,914 epoch 5 - iter 144/723 - loss 0.02578122 - time (sec): 10.11 - samples/sec: 3464.18 - lr: 0.000019 - momentum: 0.000000
|
135 |
+
2023-10-17 17:22:04,106 epoch 5 - iter 216/723 - loss 0.03035057 - time (sec): 15.30 - samples/sec: 3464.67 - lr: 0.000019 - momentum: 0.000000
|
136 |
+
2023-10-17 17:22:09,621 epoch 5 - iter 288/723 - loss 0.02847141 - time (sec): 20.82 - samples/sec: 3417.29 - lr: 0.000019 - momentum: 0.000000
|
137 |
+
2023-10-17 17:22:14,738 epoch 5 - iter 360/723 - loss 0.02912372 - time (sec): 25.93 - samples/sec: 3391.91 - lr: 0.000018 - momentum: 0.000000
|
138 |
+
2023-10-17 17:22:20,332 epoch 5 - iter 432/723 - loss 0.03092672 - time (sec): 31.53 - samples/sec: 3363.23 - lr: 0.000018 - momentum: 0.000000
|
139 |
+
2023-10-17 17:22:25,826 epoch 5 - iter 504/723 - loss 0.03207944 - time (sec): 37.02 - samples/sec: 3349.99 - lr: 0.000018 - momentum: 0.000000
|
140 |
+
2023-10-17 17:22:30,593 epoch 5 - iter 576/723 - loss 0.03267365 - time (sec): 41.79 - samples/sec: 3369.49 - lr: 0.000017 - momentum: 0.000000
|
141 |
+
2023-10-17 17:22:35,527 epoch 5 - iter 648/723 - loss 0.03353305 - time (sec): 46.72 - samples/sec: 3379.33 - lr: 0.000017 - momentum: 0.000000
|
142 |
+
2023-10-17 17:22:40,601 epoch 5 - iter 720/723 - loss 0.03284765 - time (sec): 51.80 - samples/sec: 3391.87 - lr: 0.000017 - momentum: 0.000000
|
143 |
+
2023-10-17 17:22:40,767 ----------------------------------------------------------------------------------------------------
|
144 |
+
2023-10-17 17:22:40,767 EPOCH 5 done: loss 0.0328 - lr: 0.000017
|
145 |
+
2023-10-17 17:22:44,271 DEV : loss 0.0892329216003418 - f1-score (micro avg) 0.8573
|
146 |
+
2023-10-17 17:22:44,302 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-17 17:22:49,647 epoch 6 - iter 72/723 - loss 0.02078891 - time (sec): 5.34 - samples/sec: 3508.17 - lr: 0.000016 - momentum: 0.000000
|
148 |
+
2023-10-17 17:22:55,042 epoch 6 - iter 144/723 - loss 0.01967175 - time (sec): 10.74 - samples/sec: 3329.42 - lr: 0.000016 - momentum: 0.000000
|
149 |
+
2023-10-17 17:23:00,622 epoch 6 - iter 216/723 - loss 0.02336652 - time (sec): 16.32 - samples/sec: 3328.08 - lr: 0.000016 - momentum: 0.000000
|
150 |
+
2023-10-17 17:23:06,281 epoch 6 - iter 288/723 - loss 0.02495221 - time (sec): 21.98 - samples/sec: 3302.47 - lr: 0.000015 - momentum: 0.000000
|
151 |
+
2023-10-17 17:23:11,871 epoch 6 - iter 360/723 - loss 0.02541744 - time (sec): 27.57 - samples/sec: 3251.44 - lr: 0.000015 - momentum: 0.000000
|
152 |
+
2023-10-17 17:23:17,063 epoch 6 - iter 432/723 - loss 0.02514231 - time (sec): 32.76 - samples/sec: 3287.96 - lr: 0.000015 - momentum: 0.000000
|
153 |
+
2023-10-17 17:23:22,077 epoch 6 - iter 504/723 - loss 0.02636371 - time (sec): 37.77 - samples/sec: 3294.29 - lr: 0.000014 - momentum: 0.000000
|
154 |
+
2023-10-17 17:23:27,176 epoch 6 - iter 576/723 - loss 0.02636581 - time (sec): 42.87 - samples/sec: 3312.52 - lr: 0.000014 - momentum: 0.000000
|
155 |
+
2023-10-17 17:23:32,197 epoch 6 - iter 648/723 - loss 0.02508128 - time (sec): 47.89 - samples/sec: 3312.20 - lr: 0.000014 - momentum: 0.000000
|
156 |
+
2023-10-17 17:23:37,126 epoch 6 - iter 720/723 - loss 0.02535939 - time (sec): 52.82 - samples/sec: 3327.37 - lr: 0.000013 - momentum: 0.000000
|
157 |
+
2023-10-17 17:23:37,304 ----------------------------------------------------------------------------------------------------
|
158 |
+
2023-10-17 17:23:37,305 EPOCH 6 done: loss 0.0254 - lr: 0.000013
|
159 |
+
2023-10-17 17:23:40,588 DEV : loss 0.10650834441184998 - f1-score (micro avg) 0.8453
|
160 |
+
2023-10-17 17:23:40,620 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-17 17:23:45,947 epoch 7 - iter 72/723 - loss 0.01512900 - time (sec): 5.33 - samples/sec: 3225.11 - lr: 0.000013 - momentum: 0.000000
|
162 |
+
2023-10-17 17:23:51,221 epoch 7 - iter 144/723 - loss 0.01994325 - time (sec): 10.60 - samples/sec: 3255.50 - lr: 0.000013 - momentum: 0.000000
|
163 |
+
2023-10-17 17:23:56,636 epoch 7 - iter 216/723 - loss 0.01985443 - time (sec): 16.01 - samples/sec: 3264.32 - lr: 0.000012 - momentum: 0.000000
|
164 |
+
2023-10-17 17:24:01,860 epoch 7 - iter 288/723 - loss 0.02211769 - time (sec): 21.24 - samples/sec: 3315.05 - lr: 0.000012 - momentum: 0.000000
|
165 |
+
2023-10-17 17:24:07,334 epoch 7 - iter 360/723 - loss 0.02057789 - time (sec): 26.71 - samples/sec: 3281.98 - lr: 0.000012 - momentum: 0.000000
|
166 |
+
2023-10-17 17:24:12,648 epoch 7 - iter 432/723 - loss 0.02150567 - time (sec): 32.03 - samples/sec: 3313.55 - lr: 0.000011 - momentum: 0.000000
|
167 |
+
2023-10-17 17:24:17,871 epoch 7 - iter 504/723 - loss 0.02078248 - time (sec): 37.25 - samples/sec: 3339.91 - lr: 0.000011 - momentum: 0.000000
|
168 |
+
2023-10-17 17:24:23,204 epoch 7 - iter 576/723 - loss 0.02009060 - time (sec): 42.58 - samples/sec: 3324.99 - lr: 0.000011 - momentum: 0.000000
|
169 |
+
2023-10-17 17:24:28,361 epoch 7 - iter 648/723 - loss 0.01899026 - time (sec): 47.74 - samples/sec: 3315.02 - lr: 0.000010 - momentum: 0.000000
|
170 |
+
2023-10-17 17:24:33,718 epoch 7 - iter 720/723 - loss 0.01860087 - time (sec): 53.10 - samples/sec: 3302.91 - lr: 0.000010 - momentum: 0.000000
|
171 |
+
2023-10-17 17:24:34,113 ----------------------------------------------------------------------------------------------------
|
172 |
+
2023-10-17 17:24:34,113 EPOCH 7 done: loss 0.0186 - lr: 0.000010
|
173 |
+
2023-10-17 17:24:38,254 DEV : loss 0.12094509601593018 - f1-score (micro avg) 0.8635
|
174 |
+
2023-10-17 17:24:38,277 ----------------------------------------------------------------------------------------------------
|
175 |
+
2023-10-17 17:24:43,290 epoch 8 - iter 72/723 - loss 0.01674001 - time (sec): 5.01 - samples/sec: 3332.86 - lr: 0.000010 - momentum: 0.000000
|
176 |
+
2023-10-17 17:24:48,609 epoch 8 - iter 144/723 - loss 0.01250439 - time (sec): 10.33 - samples/sec: 3286.70 - lr: 0.000009 - momentum: 0.000000
|
177 |
+
2023-10-17 17:24:53,757 epoch 8 - iter 216/723 - loss 0.01587244 - time (sec): 15.48 - samples/sec: 3308.07 - lr: 0.000009 - momentum: 0.000000
|
178 |
+
2023-10-17 17:24:59,031 epoch 8 - iter 288/723 - loss 0.01474739 - time (sec): 20.75 - samples/sec: 3322.17 - lr: 0.000009 - momentum: 0.000000
|
179 |
+
2023-10-17 17:25:04,515 epoch 8 - iter 360/723 - loss 0.01501380 - time (sec): 26.24 - samples/sec: 3299.67 - lr: 0.000008 - momentum: 0.000000
|
180 |
+
2023-10-17 17:25:09,679 epoch 8 - iter 432/723 - loss 0.01426960 - time (sec): 31.40 - samples/sec: 3309.25 - lr: 0.000008 - momentum: 0.000000
|
181 |
+
2023-10-17 17:25:15,004 epoch 8 - iter 504/723 - loss 0.01444987 - time (sec): 36.73 - samples/sec: 3318.21 - lr: 0.000008 - momentum: 0.000000
|
182 |
+
2023-10-17 17:25:20,149 epoch 8 - iter 576/723 - loss 0.01498026 - time (sec): 41.87 - samples/sec: 3332.63 - lr: 0.000007 - momentum: 0.000000
|
183 |
+
2023-10-17 17:25:25,819 epoch 8 - iter 648/723 - loss 0.01446914 - time (sec): 47.54 - samples/sec: 3344.99 - lr: 0.000007 - momentum: 0.000000
|
184 |
+
2023-10-17 17:25:30,904 epoch 8 - iter 720/723 - loss 0.01414308 - time (sec): 52.63 - samples/sec: 3337.05 - lr: 0.000007 - momentum: 0.000000
|
185 |
+
2023-10-17 17:25:31,090 ----------------------------------------------------------------------------------------------------
|
186 |
+
2023-10-17 17:25:31,090 EPOCH 8 done: loss 0.0142 - lr: 0.000007
|
187 |
+
2023-10-17 17:25:34,478 DEV : loss 0.11182001233100891 - f1-score (micro avg) 0.8732
|
188 |
+
2023-10-17 17:25:34,498 ----------------------------------------------------------------------------------------------------
|
189 |
+
2023-10-17 17:25:39,684 epoch 9 - iter 72/723 - loss 0.00674938 - time (sec): 5.18 - samples/sec: 3305.14 - lr: 0.000006 - momentum: 0.000000
|
190 |
+
2023-10-17 17:25:44,991 epoch 9 - iter 144/723 - loss 0.00755681 - time (sec): 10.49 - samples/sec: 3337.99 - lr: 0.000006 - momentum: 0.000000
|
191 |
+
2023-10-17 17:25:50,324 epoch 9 - iter 216/723 - loss 0.00853434 - time (sec): 15.82 - samples/sec: 3317.89 - lr: 0.000006 - momentum: 0.000000
|
192 |
+
2023-10-17 17:25:55,818 epoch 9 - iter 288/723 - loss 0.00885931 - time (sec): 21.32 - samples/sec: 3326.28 - lr: 0.000005 - momentum: 0.000000
|
193 |
+
2023-10-17 17:26:01,443 epoch 9 - iter 360/723 - loss 0.00947749 - time (sec): 26.94 - samples/sec: 3312.93 - lr: 0.000005 - momentum: 0.000000
|
194 |
+
2023-10-17 17:26:07,110 epoch 9 - iter 432/723 - loss 0.01029660 - time (sec): 32.61 - samples/sec: 3276.34 - lr: 0.000005 - momentum: 0.000000
|
195 |
+
2023-10-17 17:26:11,975 epoch 9 - iter 504/723 - loss 0.00971519 - time (sec): 37.48 - samples/sec: 3293.67 - lr: 0.000004 - momentum: 0.000000
|
196 |
+
2023-10-17 17:26:16,712 epoch 9 - iter 576/723 - loss 0.00913791 - time (sec): 42.21 - samples/sec: 3306.95 - lr: 0.000004 - momentum: 0.000000
|
197 |
+
2023-10-17 17:26:21,888 epoch 9 - iter 648/723 - loss 0.00920760 - time (sec): 47.39 - samples/sec: 3334.43 - lr: 0.000004 - momentum: 0.000000
|
198 |
+
2023-10-17 17:26:27,223 epoch 9 - iter 720/723 - loss 0.00937031 - time (sec): 52.72 - samples/sec: 3331.95 - lr: 0.000003 - momentum: 0.000000
|
199 |
+
2023-10-17 17:26:27,395 ----------------------------------------------------------------------------------------------------
|
200 |
+
2023-10-17 17:26:27,395 EPOCH 9 done: loss 0.0093 - lr: 0.000003
|
201 |
+
2023-10-17 17:26:30,608 DEV : loss 0.1297394335269928 - f1-score (micro avg) 0.8725
|
202 |
+
2023-10-17 17:26:30,624 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-17 17:26:35,888 epoch 10 - iter 72/723 - loss 0.01223344 - time (sec): 5.26 - samples/sec: 3424.14 - lr: 0.000003 - momentum: 0.000000
|
204 |
+
2023-10-17 17:26:40,837 epoch 10 - iter 144/723 - loss 0.00842767 - time (sec): 10.21 - samples/sec: 3401.50 - lr: 0.000003 - momentum: 0.000000
|
205 |
+
2023-10-17 17:26:46,403 epoch 10 - iter 216/723 - loss 0.00985753 - time (sec): 15.78 - samples/sec: 3366.92 - lr: 0.000002 - momentum: 0.000000
|
206 |
+
2023-10-17 17:26:51,833 epoch 10 - iter 288/723 - loss 0.00861439 - time (sec): 21.21 - samples/sec: 3356.16 - lr: 0.000002 - momentum: 0.000000
|
207 |
+
2023-10-17 17:26:56,978 epoch 10 - iter 360/723 - loss 0.00751018 - time (sec): 26.35 - samples/sec: 3368.57 - lr: 0.000002 - momentum: 0.000000
|
208 |
+
2023-10-17 17:27:02,349 epoch 10 - iter 432/723 - loss 0.00721843 - time (sec): 31.72 - samples/sec: 3352.43 - lr: 0.000001 - momentum: 0.000000
|
209 |
+
2023-10-17 17:27:07,627 epoch 10 - iter 504/723 - loss 0.00709729 - time (sec): 37.00 - samples/sec: 3336.75 - lr: 0.000001 - momentum: 0.000000
|
210 |
+
2023-10-17 17:27:13,126 epoch 10 - iter 576/723 - loss 0.00682846 - time (sec): 42.50 - samples/sec: 3317.73 - lr: 0.000001 - momentum: 0.000000
|
211 |
+
2023-10-17 17:27:18,630 epoch 10 - iter 648/723 - loss 0.00690953 - time (sec): 48.00 - samples/sec: 3309.77 - lr: 0.000000 - momentum: 0.000000
|
212 |
+
2023-10-17 17:27:23,834 epoch 10 - iter 720/723 - loss 0.00716323 - time (sec): 53.21 - samples/sec: 3304.82 - lr: 0.000000 - momentum: 0.000000
|
213 |
+
2023-10-17 17:27:23,986 ----------------------------------------------------------------------------------------------------
|
214 |
+
2023-10-17 17:27:23,986 EPOCH 10 done: loss 0.0071 - lr: 0.000000
|
215 |
+
2023-10-17 17:27:27,783 DEV : loss 0.12998518347740173 - f1-score (micro avg) 0.8688
|
216 |
+
2023-10-17 17:27:28,161 ----------------------------------------------------------------------------------------------------
|
217 |
+
2023-10-17 17:27:28,162 Loading model from best epoch ...
|
218 |
+
2023-10-17 17:27:29,632 SequenceTagger predicts: Dictionary with 13 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG
|
219 |
+
2023-10-17 17:27:32,734
|
220 |
+
Results:
|
221 |
+
- F-score (micro) 0.8457
|
222 |
+
- F-score (macro) 0.7463
|
223 |
+
- Accuracy 0.7446
|
224 |
+
|
225 |
+
By class:
|
226 |
+
precision recall f1-score support
|
227 |
+
|
228 |
+
PER 0.7904 0.8921 0.8382 482
|
229 |
+
LOC 0.9222 0.8799 0.9006 458
|
230 |
+
ORG 0.5882 0.4348 0.5000 69
|
231 |
+
|
232 |
+
micro avg 0.8362 0.8553 0.8457 1009
|
233 |
+
macro avg 0.7670 0.7356 0.7463 1009
|
234 |
+
weighted avg 0.8364 0.8553 0.8434 1009
|
235 |
+
|
236 |
+
2023-10-17 17:27:32,735 ----------------------------------------------------------------------------------------------------
|