Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697541700.bce904bcef33.2023.3 +3 -0
- test.tsv +0 -0
- training.log +238 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b12f9af4e50d19bc655e5dda57475e7d60886ce01450b1a4fb5b36bdf1377ab1
|
3 |
+
size 440941957
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 11:22:41 0.0000 0.3674 0.0927 0.7095 0.7489 0.7287 0.5916
|
3 |
+
2 11:23:45 0.0000 0.1053 0.0796 0.7224 0.7771 0.7488 0.6167
|
4 |
+
3 11:24:48 0.0000 0.0761 0.0918 0.7558 0.7421 0.7489 0.6137
|
5 |
+
4 11:25:51 0.0000 0.0544 0.1407 0.7265 0.7964 0.7598 0.6320
|
6 |
+
5 11:26:55 0.0000 0.0429 0.1663 0.7622 0.7941 0.7778 0.6555
|
7 |
+
6 11:27:59 0.0000 0.0312 0.1633 0.7467 0.7704 0.7584 0.6271
|
8 |
+
7 11:29:02 0.0000 0.0219 0.1899 0.7468 0.7873 0.7665 0.6391
|
9 |
+
8 11:30:05 0.0000 0.0156 0.2174 0.7521 0.7964 0.7736 0.6477
|
10 |
+
9 11:31:09 0.0000 0.0107 0.2290 0.7342 0.7873 0.7598 0.6322
|
11 |
+
10 11:32:15 0.0000 0.0080 0.2330 0.7436 0.7873 0.7648 0.6356
|
runs/events.out.tfevents.1697541700.bce904bcef33.2023.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:148cb5ad17a0b28c04dce410539ff44c81ae6fb4cd95707e345f3610005de453
|
3 |
+
size 556612
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 11:21:40,050 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 11:21:40,051 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 11:21:40,051 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 11:21:40,051 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
48 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
49 |
+
2023-10-17 11:21:40,051 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 11:21:40,052 Train: 7936 sentences
|
51 |
+
2023-10-17 11:21:40,052 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 11:21:40,052 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 11:21:40,052 Training Params:
|
54 |
+
2023-10-17 11:21:40,052 - learning_rate: "5e-05"
|
55 |
+
2023-10-17 11:21:40,052 - mini_batch_size: "8"
|
56 |
+
2023-10-17 11:21:40,052 - max_epochs: "10"
|
57 |
+
2023-10-17 11:21:40,052 - shuffle: "True"
|
58 |
+
2023-10-17 11:21:40,052 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 11:21:40,052 Plugins:
|
60 |
+
2023-10-17 11:21:40,052 - TensorboardLogger
|
61 |
+
2023-10-17 11:21:40,052 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 11:21:40,052 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 11:21:40,052 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 11:21:40,052 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 11:21:40,052 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 11:21:40,052 Computation:
|
67 |
+
2023-10-17 11:21:40,052 - compute on device: cuda:0
|
68 |
+
2023-10-17 11:21:40,052 - embedding storage: none
|
69 |
+
2023-10-17 11:21:40,052 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 11:21:40,052 Model training base path: "hmbench-icdar/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
71 |
+
2023-10-17 11:21:40,052 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 11:21:40,052 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 11:21:40,052 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 11:21:45,743 epoch 1 - iter 99/992 - loss 2.00752470 - time (sec): 5.69 - samples/sec: 2843.79 - lr: 0.000005 - momentum: 0.000000
|
75 |
+
2023-10-17 11:21:51,606 epoch 1 - iter 198/992 - loss 1.16110239 - time (sec): 11.55 - samples/sec: 2877.04 - lr: 0.000010 - momentum: 0.000000
|
76 |
+
2023-10-17 11:21:57,730 epoch 1 - iter 297/992 - loss 0.86009292 - time (sec): 17.68 - samples/sec: 2807.08 - lr: 0.000015 - momentum: 0.000000
|
77 |
+
2023-10-17 11:22:03,344 epoch 1 - iter 396/992 - loss 0.70056867 - time (sec): 23.29 - samples/sec: 2807.69 - lr: 0.000020 - momentum: 0.000000
|
78 |
+
2023-10-17 11:22:09,204 epoch 1 - iter 495/992 - loss 0.59290102 - time (sec): 29.15 - samples/sec: 2807.40 - lr: 0.000025 - momentum: 0.000000
|
79 |
+
2023-10-17 11:22:15,182 epoch 1 - iter 594/992 - loss 0.51678549 - time (sec): 35.13 - samples/sec: 2808.16 - lr: 0.000030 - momentum: 0.000000
|
80 |
+
2023-10-17 11:22:20,959 epoch 1 - iter 693/992 - loss 0.46411643 - time (sec): 40.91 - samples/sec: 2806.30 - lr: 0.000035 - momentum: 0.000000
|
81 |
+
2023-10-17 11:22:26,973 epoch 1 - iter 792/992 - loss 0.42507693 - time (sec): 46.92 - samples/sec: 2798.32 - lr: 0.000040 - momentum: 0.000000
|
82 |
+
2023-10-17 11:22:32,888 epoch 1 - iter 891/992 - loss 0.39307524 - time (sec): 52.83 - samples/sec: 2786.92 - lr: 0.000045 - momentum: 0.000000
|
83 |
+
2023-10-17 11:22:38,704 epoch 1 - iter 990/992 - loss 0.36782772 - time (sec): 58.65 - samples/sec: 2790.32 - lr: 0.000050 - momentum: 0.000000
|
84 |
+
2023-10-17 11:22:38,823 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 11:22:38,823 EPOCH 1 done: loss 0.3674 - lr: 0.000050
|
86 |
+
2023-10-17 11:22:41,920 DEV : loss 0.09267440438270569 - f1-score (micro avg) 0.7287
|
87 |
+
2023-10-17 11:22:41,943 saving best model
|
88 |
+
2023-10-17 11:22:42,310 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 11:22:48,213 epoch 2 - iter 99/992 - loss 0.11596098 - time (sec): 5.90 - samples/sec: 2864.40 - lr: 0.000049 - momentum: 0.000000
|
90 |
+
2023-10-17 11:22:54,188 epoch 2 - iter 198/992 - loss 0.11376424 - time (sec): 11.88 - samples/sec: 2788.50 - lr: 0.000049 - momentum: 0.000000
|
91 |
+
2023-10-17 11:23:00,295 epoch 2 - iter 297/992 - loss 0.11209663 - time (sec): 17.98 - samples/sec: 2759.41 - lr: 0.000048 - momentum: 0.000000
|
92 |
+
2023-10-17 11:23:06,316 epoch 2 - iter 396/992 - loss 0.11161254 - time (sec): 24.00 - samples/sec: 2767.95 - lr: 0.000048 - momentum: 0.000000
|
93 |
+
2023-10-17 11:23:12,200 epoch 2 - iter 495/992 - loss 0.10962236 - time (sec): 29.89 - samples/sec: 2762.55 - lr: 0.000047 - momentum: 0.000000
|
94 |
+
2023-10-17 11:23:18,445 epoch 2 - iter 594/992 - loss 0.10658082 - time (sec): 36.13 - samples/sec: 2749.28 - lr: 0.000047 - momentum: 0.000000
|
95 |
+
2023-10-17 11:23:24,452 epoch 2 - iter 693/992 - loss 0.10590489 - time (sec): 42.14 - samples/sec: 2752.00 - lr: 0.000046 - momentum: 0.000000
|
96 |
+
2023-10-17 11:23:30,157 epoch 2 - iter 792/992 - loss 0.10554854 - time (sec): 47.85 - samples/sec: 2752.16 - lr: 0.000046 - momentum: 0.000000
|
97 |
+
2023-10-17 11:23:35,744 epoch 2 - iter 891/992 - loss 0.10485385 - time (sec): 53.43 - samples/sec: 2756.15 - lr: 0.000045 - momentum: 0.000000
|
98 |
+
2023-10-17 11:23:41,651 epoch 2 - iter 990/992 - loss 0.10541228 - time (sec): 59.34 - samples/sec: 2757.92 - lr: 0.000044 - momentum: 0.000000
|
99 |
+
2023-10-17 11:23:41,762 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 11:23:41,763 EPOCH 2 done: loss 0.1053 - lr: 0.000044
|
101 |
+
2023-10-17 11:23:45,546 DEV : loss 0.07957779616117477 - f1-score (micro avg) 0.7488
|
102 |
+
2023-10-17 11:23:45,567 saving best model
|
103 |
+
2023-10-17 11:23:46,062 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 11:23:51,998 epoch 3 - iter 99/992 - loss 0.07399883 - time (sec): 5.93 - samples/sec: 2792.44 - lr: 0.000044 - momentum: 0.000000
|
105 |
+
2023-10-17 11:23:57,894 epoch 3 - iter 198/992 - loss 0.07782338 - time (sec): 11.83 - samples/sec: 2777.78 - lr: 0.000043 - momentum: 0.000000
|
106 |
+
2023-10-17 11:24:03,807 epoch 3 - iter 297/992 - loss 0.07965927 - time (sec): 17.74 - samples/sec: 2795.99 - lr: 0.000043 - momentum: 0.000000
|
107 |
+
2023-10-17 11:24:09,711 epoch 3 - iter 396/992 - loss 0.07595699 - time (sec): 23.65 - samples/sec: 2808.81 - lr: 0.000042 - momentum: 0.000000
|
108 |
+
2023-10-17 11:24:15,396 epoch 3 - iter 495/992 - loss 0.07484677 - time (sec): 29.33 - samples/sec: 2819.60 - lr: 0.000042 - momentum: 0.000000
|
109 |
+
2023-10-17 11:24:21,231 epoch 3 - iter 594/992 - loss 0.07449912 - time (sec): 35.17 - samples/sec: 2800.02 - lr: 0.000041 - momentum: 0.000000
|
110 |
+
2023-10-17 11:24:27,126 epoch 3 - iter 693/992 - loss 0.07526423 - time (sec): 41.06 - samples/sec: 2795.76 - lr: 0.000041 - momentum: 0.000000
|
111 |
+
2023-10-17 11:24:33,067 epoch 3 - iter 792/992 - loss 0.07578093 - time (sec): 47.00 - samples/sec: 2790.69 - lr: 0.000040 - momentum: 0.000000
|
112 |
+
2023-10-17 11:24:39,214 epoch 3 - iter 891/992 - loss 0.07554286 - time (sec): 53.15 - samples/sec: 2782.60 - lr: 0.000039 - momentum: 0.000000
|
113 |
+
2023-10-17 11:24:45,213 epoch 3 - iter 990/992 - loss 0.07580919 - time (sec): 59.15 - samples/sec: 2766.04 - lr: 0.000039 - momentum: 0.000000
|
114 |
+
2023-10-17 11:24:45,340 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 11:24:45,340 EPOCH 3 done: loss 0.0761 - lr: 0.000039
|
116 |
+
2023-10-17 11:24:48,746 DEV : loss 0.09182097762823105 - f1-score (micro avg) 0.7489
|
117 |
+
2023-10-17 11:24:48,769 saving best model
|
118 |
+
2023-10-17 11:24:49,263 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-17 11:24:55,170 epoch 4 - iter 99/992 - loss 0.05468852 - time (sec): 5.90 - samples/sec: 2780.10 - lr: 0.000038 - momentum: 0.000000
|
120 |
+
2023-10-17 11:25:01,487 epoch 4 - iter 198/992 - loss 0.05293064 - time (sec): 12.22 - samples/sec: 2794.12 - lr: 0.000038 - momentum: 0.000000
|
121 |
+
2023-10-17 11:25:07,607 epoch 4 - iter 297/992 - loss 0.05364317 - time (sec): 18.34 - samples/sec: 2776.94 - lr: 0.000037 - momentum: 0.000000
|
122 |
+
2023-10-17 11:25:13,550 epoch 4 - iter 396/992 - loss 0.05402008 - time (sec): 24.28 - samples/sec: 2777.04 - lr: 0.000037 - momentum: 0.000000
|
123 |
+
2023-10-17 11:25:19,296 epoch 4 - iter 495/992 - loss 0.05392577 - time (sec): 30.03 - samples/sec: 2786.92 - lr: 0.000036 - momentum: 0.000000
|
124 |
+
2023-10-17 11:25:24,951 epoch 4 - iter 594/992 - loss 0.05443890 - time (sec): 35.69 - samples/sec: 2782.91 - lr: 0.000036 - momentum: 0.000000
|
125 |
+
2023-10-17 11:25:30,557 epoch 4 - iter 693/992 - loss 0.05350202 - time (sec): 41.29 - samples/sec: 2783.23 - lr: 0.000035 - momentum: 0.000000
|
126 |
+
2023-10-17 11:25:36,431 epoch 4 - iter 792/992 - loss 0.05357310 - time (sec): 47.17 - samples/sec: 2777.82 - lr: 0.000034 - momentum: 0.000000
|
127 |
+
2023-10-17 11:25:42,388 epoch 4 - iter 891/992 - loss 0.05445889 - time (sec): 53.12 - samples/sec: 2780.60 - lr: 0.000034 - momentum: 0.000000
|
128 |
+
2023-10-17 11:25:48,076 epoch 4 - iter 990/992 - loss 0.05431231 - time (sec): 58.81 - samples/sec: 2784.57 - lr: 0.000033 - momentum: 0.000000
|
129 |
+
2023-10-17 11:25:48,189 ----------------------------------------------------------------------------------------------------
|
130 |
+
2023-10-17 11:25:48,190 EPOCH 4 done: loss 0.0544 - lr: 0.000033
|
131 |
+
2023-10-17 11:25:51,644 DEV : loss 0.1407020390033722 - f1-score (micro avg) 0.7598
|
132 |
+
2023-10-17 11:25:51,666 saving best model
|
133 |
+
2023-10-17 11:25:52,143 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-17 11:25:58,088 epoch 5 - iter 99/992 - loss 0.04345102 - time (sec): 5.94 - samples/sec: 2737.20 - lr: 0.000033 - momentum: 0.000000
|
135 |
+
2023-10-17 11:26:04,229 epoch 5 - iter 198/992 - loss 0.04013191 - time (sec): 12.08 - samples/sec: 2773.50 - lr: 0.000032 - momentum: 0.000000
|
136 |
+
2023-10-17 11:26:10,153 epoch 5 - iter 297/992 - loss 0.04013654 - time (sec): 18.01 - samples/sec: 2788.59 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-17 11:26:16,359 epoch 5 - iter 396/992 - loss 0.04153776 - time (sec): 24.21 - samples/sec: 2797.16 - lr: 0.000031 - momentum: 0.000000
|
138 |
+
2023-10-17 11:26:22,273 epoch 5 - iter 495/992 - loss 0.04178549 - time (sec): 30.13 - samples/sec: 2793.12 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-17 11:26:27,904 epoch 5 - iter 594/992 - loss 0.04313324 - time (sec): 35.76 - samples/sec: 2796.33 - lr: 0.000030 - momentum: 0.000000
|
140 |
+
2023-10-17 11:26:34,115 epoch 5 - iter 693/992 - loss 0.04394145 - time (sec): 41.97 - samples/sec: 2773.35 - lr: 0.000029 - momentum: 0.000000
|
141 |
+
2023-10-17 11:26:40,034 epoch 5 - iter 792/992 - loss 0.04428695 - time (sec): 47.89 - samples/sec: 2761.16 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-17 11:26:45,880 epoch 5 - iter 891/992 - loss 0.04347387 - time (sec): 53.73 - samples/sec: 2758.23 - lr: 0.000028 - momentum: 0.000000
|
143 |
+
2023-10-17 11:26:51,571 epoch 5 - iter 990/992 - loss 0.04302101 - time (sec): 59.42 - samples/sec: 2753.59 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-17 11:26:51,696 ----------------------------------------------------------------------------------------------------
|
145 |
+
2023-10-17 11:26:51,696 EPOCH 5 done: loss 0.0429 - lr: 0.000028
|
146 |
+
2023-10-17 11:26:55,092 DEV : loss 0.1663055419921875 - f1-score (micro avg) 0.7778
|
147 |
+
2023-10-17 11:26:55,113 saving best model
|
148 |
+
2023-10-17 11:26:55,582 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-17 11:27:01,664 epoch 6 - iter 99/992 - loss 0.03345702 - time (sec): 6.08 - samples/sec: 2705.79 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-10-17 11:27:07,592 epoch 6 - iter 198/992 - loss 0.03258281 - time (sec): 12.01 - samples/sec: 2720.35 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-17 11:27:13,856 epoch 6 - iter 297/992 - loss 0.03031919 - time (sec): 18.27 - samples/sec: 2750.49 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-10-17 11:27:19,774 epoch 6 - iter 396/992 - loss 0.03089649 - time (sec): 24.19 - samples/sec: 2754.91 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-17 11:27:25,776 epoch 6 - iter 495/992 - loss 0.02999409 - time (sec): 30.19 - samples/sec: 2762.61 - lr: 0.000025 - momentum: 0.000000
|
154 |
+
2023-10-17 11:27:31,638 epoch 6 - iter 594/992 - loss 0.03070964 - time (sec): 36.05 - samples/sec: 2765.56 - lr: 0.000024 - momentum: 0.000000
|
155 |
+
2023-10-17 11:27:37,231 epoch 6 - iter 693/992 - loss 0.03109293 - time (sec): 41.65 - samples/sec: 2769.11 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-17 11:27:42,876 epoch 6 - iter 792/992 - loss 0.03056361 - time (sec): 47.29 - samples/sec: 2773.64 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-10-17 11:27:48,608 epoch 6 - iter 891/992 - loss 0.03117794 - time (sec): 53.02 - samples/sec: 2778.13 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-17 11:27:54,391 epoch 6 - iter 990/992 - loss 0.03126223 - time (sec): 58.80 - samples/sec: 2781.63 - lr: 0.000022 - momentum: 0.000000
|
159 |
+
2023-10-17 11:27:54,511 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-17 11:27:54,511 EPOCH 6 done: loss 0.0312 - lr: 0.000022
|
161 |
+
2023-10-17 11:27:59,227 DEV : loss 0.1633480340242386 - f1-score (micro avg) 0.7584
|
162 |
+
2023-10-17 11:27:59,263 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-17 11:28:05,215 epoch 7 - iter 99/992 - loss 0.01789778 - time (sec): 5.95 - samples/sec: 2739.15 - lr: 0.000022 - momentum: 0.000000
|
164 |
+
2023-10-17 11:28:11,218 epoch 7 - iter 198/992 - loss 0.01724841 - time (sec): 11.95 - samples/sec: 2745.60 - lr: 0.000021 - momentum: 0.000000
|
165 |
+
2023-10-17 11:28:17,621 epoch 7 - iter 297/992 - loss 0.01961745 - time (sec): 18.36 - samples/sec: 2700.02 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-17 11:28:23,473 epoch 7 - iter 396/992 - loss 0.01992616 - time (sec): 24.21 - samples/sec: 2712.23 - lr: 0.000020 - momentum: 0.000000
|
167 |
+
2023-10-17 11:28:29,388 epoch 7 - iter 495/992 - loss 0.02094923 - time (sec): 30.12 - samples/sec: 2720.79 - lr: 0.000019 - momentum: 0.000000
|
168 |
+
2023-10-17 11:28:35,340 epoch 7 - iter 594/992 - loss 0.01985550 - time (sec): 36.08 - samples/sec: 2728.57 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-17 11:28:41,393 epoch 7 - iter 693/992 - loss 0.02067558 - time (sec): 42.13 - samples/sec: 2724.08 - lr: 0.000018 - momentum: 0.000000
|
170 |
+
2023-10-17 11:28:47,206 epoch 7 - iter 792/992 - loss 0.02093216 - time (sec): 47.94 - samples/sec: 2718.22 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-17 11:28:53,073 epoch 7 - iter 891/992 - loss 0.02197206 - time (sec): 53.81 - samples/sec: 2739.75 - lr: 0.000017 - momentum: 0.000000
|
172 |
+
2023-10-17 11:28:58,840 epoch 7 - iter 990/992 - loss 0.02197388 - time (sec): 59.58 - samples/sec: 2747.71 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-17 11:28:58,961 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-10-17 11:28:58,961 EPOCH 7 done: loss 0.0219 - lr: 0.000017
|
175 |
+
2023-10-17 11:29:02,566 DEV : loss 0.1898750215768814 - f1-score (micro avg) 0.7665
|
176 |
+
2023-10-17 11:29:02,594 ----------------------------------------------------------------------------------------------------
|
177 |
+
2023-10-17 11:29:08,347 epoch 8 - iter 99/992 - loss 0.00858606 - time (sec): 5.75 - samples/sec: 2846.11 - lr: 0.000016 - momentum: 0.000000
|
178 |
+
2023-10-17 11:29:14,064 epoch 8 - iter 198/992 - loss 0.01171469 - time (sec): 11.47 - samples/sec: 2824.80 - lr: 0.000016 - momentum: 0.000000
|
179 |
+
2023-10-17 11:29:20,281 epoch 8 - iter 297/992 - loss 0.01211733 - time (sec): 17.69 - samples/sec: 2828.38 - lr: 0.000015 - momentum: 0.000000
|
180 |
+
2023-10-17 11:29:26,152 epoch 8 - iter 396/992 - loss 0.01169790 - time (sec): 23.56 - samples/sec: 2805.84 - lr: 0.000014 - momentum: 0.000000
|
181 |
+
2023-10-17 11:29:32,084 epoch 8 - iter 495/992 - loss 0.01211186 - time (sec): 29.49 - samples/sec: 2821.28 - lr: 0.000014 - momentum: 0.000000
|
182 |
+
2023-10-17 11:29:38,180 epoch 8 - iter 594/992 - loss 0.01413340 - time (sec): 35.58 - samples/sec: 2807.68 - lr: 0.000013 - momentum: 0.000000
|
183 |
+
2023-10-17 11:29:43,898 epoch 8 - iter 693/992 - loss 0.01436134 - time (sec): 41.30 - samples/sec: 2798.96 - lr: 0.000013 - momentum: 0.000000
|
184 |
+
2023-10-17 11:29:49,496 epoch 8 - iter 792/992 - loss 0.01496934 - time (sec): 46.90 - samples/sec: 2784.54 - lr: 0.000012 - momentum: 0.000000
|
185 |
+
2023-10-17 11:29:55,299 epoch 8 - iter 891/992 - loss 0.01507510 - time (sec): 52.70 - samples/sec: 2793.17 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2023-10-17 11:30:01,345 epoch 8 - iter 990/992 - loss 0.01559016 - time (sec): 58.75 - samples/sec: 2785.33 - lr: 0.000011 - momentum: 0.000000
|
187 |
+
2023-10-17 11:30:01,478 ----------------------------------------------------------------------------------------------------
|
188 |
+
2023-10-17 11:30:01,478 EPOCH 8 done: loss 0.0156 - lr: 0.000011
|
189 |
+
2023-10-17 11:30:05,096 DEV : loss 0.21736501157283783 - f1-score (micro avg) 0.7736
|
190 |
+
2023-10-17 11:30:05,127 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-17 11:30:11,217 epoch 9 - iter 99/992 - loss 0.01189736 - time (sec): 6.09 - samples/sec: 2601.72 - lr: 0.000011 - momentum: 0.000000
|
192 |
+
2023-10-17 11:30:17,689 epoch 9 - iter 198/992 - loss 0.01120784 - time (sec): 12.56 - samples/sec: 2643.77 - lr: 0.000010 - momentum: 0.000000
|
193 |
+
2023-10-17 11:30:23,899 epoch 9 - iter 297/992 - loss 0.01112974 - time (sec): 18.77 - samples/sec: 2685.89 - lr: 0.000009 - momentum: 0.000000
|
194 |
+
2023-10-17 11:30:29,897 epoch 9 - iter 396/992 - loss 0.00969053 - time (sec): 24.77 - samples/sec: 2692.32 - lr: 0.000009 - momentum: 0.000000
|
195 |
+
2023-10-17 11:30:35,679 epoch 9 - iter 495/992 - loss 0.00960030 - time (sec): 30.55 - samples/sec: 2702.51 - lr: 0.000008 - momentum: 0.000000
|
196 |
+
2023-10-17 11:30:41,692 epoch 9 - iter 594/992 - loss 0.00957094 - time (sec): 36.56 - samples/sec: 2700.06 - lr: 0.000008 - momentum: 0.000000
|
197 |
+
2023-10-17 11:30:47,567 epoch 9 - iter 693/992 - loss 0.00941102 - time (sec): 42.44 - samples/sec: 2704.48 - lr: 0.000007 - momentum: 0.000000
|
198 |
+
2023-10-17 11:30:53,670 epoch 9 - iter 792/992 - loss 0.01010825 - time (sec): 48.54 - samples/sec: 2709.90 - lr: 0.000007 - momentum: 0.000000
|
199 |
+
2023-10-17 11:30:59,631 epoch 9 - iter 891/992 - loss 0.01035941 - time (sec): 54.50 - samples/sec: 2710.26 - lr: 0.000006 - momentum: 0.000000
|
200 |
+
2023-10-17 11:31:05,562 epoch 9 - iter 990/992 - loss 0.01067263 - time (sec): 60.43 - samples/sec: 2708.56 - lr: 0.000006 - momentum: 0.000000
|
201 |
+
2023-10-17 11:31:05,685 ----------------------------------------------------------------------------------------------------
|
202 |
+
2023-10-17 11:31:05,685 EPOCH 9 done: loss 0.0107 - lr: 0.000006
|
203 |
+
2023-10-17 11:31:09,296 DEV : loss 0.2289990335702896 - f1-score (micro avg) 0.7598
|
204 |
+
2023-10-17 11:31:09,320 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-17 11:31:15,610 epoch 10 - iter 99/992 - loss 0.00433310 - time (sec): 6.29 - samples/sec: 2625.70 - lr: 0.000005 - momentum: 0.000000
|
206 |
+
2023-10-17 11:31:21,873 epoch 10 - iter 198/992 - loss 0.00533994 - time (sec): 12.55 - samples/sec: 2561.60 - lr: 0.000004 - momentum: 0.000000
|
207 |
+
2023-10-17 11:31:28,202 epoch 10 - iter 297/992 - loss 0.00637622 - time (sec): 18.88 - samples/sec: 2575.30 - lr: 0.000004 - momentum: 0.000000
|
208 |
+
2023-10-17 11:31:34,426 epoch 10 - iter 396/992 - loss 0.00717457 - time (sec): 25.10 - samples/sec: 2581.66 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-17 11:31:40,384 epoch 10 - iter 495/992 - loss 0.00716627 - time (sec): 31.06 - samples/sec: 2593.97 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-17 11:31:46,392 epoch 10 - iter 594/992 - loss 0.00678007 - time (sec): 37.07 - samples/sec: 2628.76 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-17 11:31:52,420 epoch 10 - iter 693/992 - loss 0.00705269 - time (sec): 43.10 - samples/sec: 2659.76 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-17 11:31:58,173 epoch 10 - iter 792/992 - loss 0.00695957 - time (sec): 48.85 - samples/sec: 2683.39 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-17 11:32:04,222 epoch 10 - iter 891/992 - loss 0.00746367 - time (sec): 54.90 - samples/sec: 2676.79 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-17 11:32:10,346 epoch 10 - iter 990/992 - loss 0.00797105 - time (sec): 61.02 - samples/sec: 2682.68 - lr: 0.000000 - momentum: 0.000000
|
215 |
+
2023-10-17 11:32:10,450 ----------------------------------------------------------------------------------------------------
|
216 |
+
2023-10-17 11:32:10,450 EPOCH 10 done: loss 0.0080 - lr: 0.000000
|
217 |
+
2023-10-17 11:32:15,038 DEV : loss 0.23297961056232452 - f1-score (micro avg) 0.7648
|
218 |
+
2023-10-17 11:32:15,550 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-17 11:32:15,552 Loading model from best epoch ...
|
220 |
+
2023-10-17 11:32:17,148 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
221 |
+
2023-10-17 11:32:21,019
|
222 |
+
Results:
|
223 |
+
- F-score (micro) 0.7587
|
224 |
+
- F-score (macro) 0.6925
|
225 |
+
- Accuracy 0.6447
|
226 |
+
|
227 |
+
By class:
|
228 |
+
precision recall f1-score support
|
229 |
+
|
230 |
+
LOC 0.8560 0.7893 0.8213 655
|
231 |
+
PER 0.6335 0.7982 0.7063 223
|
232 |
+
ORG 0.5565 0.5433 0.5498 127
|
233 |
+
|
234 |
+
micro avg 0.7572 0.7602 0.7587 1005
|
235 |
+
macro avg 0.6820 0.7103 0.6925 1005
|
236 |
+
weighted avg 0.7687 0.7602 0.7615 1005
|
237 |
+
|
238 |
+
2023-10-17 11:32:21,020 ----------------------------------------------------------------------------------------------------
|