Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697546819.bce904bcef33.2023.9 +3 -0
- test.tsv +0 -0
- training.log +236 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63a0f7e2211202e1ae482d9de47ce29f804bd284e322cfabd2a8ea86b174e639
|
3 |
+
size 440941957
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 12:48:34 0.0000 0.3670 0.0871 0.7015 0.7070 0.7042 0.5575
|
3 |
+
2 12:50:13 0.0000 0.1217 0.1113 0.7453 0.7647 0.7549 0.6225
|
4 |
+
3 12:51:49 0.0000 0.0921 0.1251 0.7588 0.7330 0.7457 0.6067
|
5 |
+
4 12:53:26 0.0000 0.0719 0.1501 0.7213 0.7670 0.7434 0.6130
|
6 |
+
5 12:55:02 0.0000 0.0543 0.2085 0.7376 0.7568 0.7471 0.6115
|
7 |
+
6 12:56:39 0.0000 0.0396 0.2126 0.7338 0.7704 0.7517 0.6197
|
8 |
+
7 12:58:16 0.0000 0.0299 0.2321 0.7158 0.7805 0.7468 0.6139
|
9 |
+
8 12:59:51 0.0000 0.0203 0.2372 0.7465 0.7794 0.7626 0.6321
|
10 |
+
9 13:01:29 0.0000 0.0138 0.2417 0.7179 0.7919 0.7531 0.6217
|
11 |
+
10 13:03:07 0.0000 0.0092 0.2555 0.7310 0.7839 0.7566 0.6249
|
runs/events.out.tfevents.1697546819.bce904bcef33.2023.9
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca298b7e6acd6ab95016ae4dea501ac9c37d980776f82ef15c1f4fe79d2a4e55
|
3 |
+
size 1108164
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-17 12:46:59,129 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-17 12:46:59,130 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): ElectraModel(
|
5 |
+
(embeddings): ElectraEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): ElectraEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x ElectraLayer(
|
15 |
+
(attention): ElectraAttention(
|
16 |
+
(self): ElectraSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): ElectraSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): ElectraIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): ElectraOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
)
|
41 |
+
)
|
42 |
+
(locked_dropout): LockedDropout(p=0.5)
|
43 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
44 |
+
(loss_function): CrossEntropyLoss()
|
45 |
+
)"
|
46 |
+
2023-10-17 12:46:59,130 ----------------------------------------------------------------------------------------------------
|
47 |
+
2023-10-17 12:46:59,130 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
48 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
49 |
+
2023-10-17 12:46:59,130 ----------------------------------------------------------------------------------------------------
|
50 |
+
2023-10-17 12:46:59,130 Train: 7936 sentences
|
51 |
+
2023-10-17 12:46:59,130 (train_with_dev=False, train_with_test=False)
|
52 |
+
2023-10-17 12:46:59,130 ----------------------------------------------------------------------------------------------------
|
53 |
+
2023-10-17 12:46:59,130 Training Params:
|
54 |
+
2023-10-17 12:46:59,130 - learning_rate: "5e-05"
|
55 |
+
2023-10-17 12:46:59,130 - mini_batch_size: "4"
|
56 |
+
2023-10-17 12:46:59,130 - max_epochs: "10"
|
57 |
+
2023-10-17 12:46:59,130 - shuffle: "True"
|
58 |
+
2023-10-17 12:46:59,130 ----------------------------------------------------------------------------------------------------
|
59 |
+
2023-10-17 12:46:59,130 Plugins:
|
60 |
+
2023-10-17 12:46:59,130 - TensorboardLogger
|
61 |
+
2023-10-17 12:46:59,130 - LinearScheduler | warmup_fraction: '0.1'
|
62 |
+
2023-10-17 12:46:59,130 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-17 12:46:59,130 Final evaluation on model from best epoch (best-model.pt)
|
64 |
+
2023-10-17 12:46:59,130 - metric: "('micro avg', 'f1-score')"
|
65 |
+
2023-10-17 12:46:59,130 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-17 12:46:59,130 Computation:
|
67 |
+
2023-10-17 12:46:59,130 - compute on device: cuda:0
|
68 |
+
2023-10-17 12:46:59,131 - embedding storage: none
|
69 |
+
2023-10-17 12:46:59,131 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-17 12:46:59,131 Model training base path: "hmbench-icdar/fr-hmteams/teams-base-historic-multilingual-discriminator-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
71 |
+
2023-10-17 12:46:59,131 ----------------------------------------------------------------------------------------------------
|
72 |
+
2023-10-17 12:46:59,131 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-17 12:46:59,131 Logging anything other than scalars to TensorBoard is currently not supported.
|
74 |
+
2023-10-17 12:47:08,412 epoch 1 - iter 198/1984 - loss 1.95138784 - time (sec): 9.28 - samples/sec: 1840.03 - lr: 0.000005 - momentum: 0.000000
|
75 |
+
2023-10-17 12:47:17,762 epoch 1 - iter 396/1984 - loss 1.16755511 - time (sec): 18.63 - samples/sec: 1773.29 - lr: 0.000010 - momentum: 0.000000
|
76 |
+
2023-10-17 12:47:27,276 epoch 1 - iter 594/1984 - loss 0.85631491 - time (sec): 28.14 - samples/sec: 1778.06 - lr: 0.000015 - momentum: 0.000000
|
77 |
+
2023-10-17 12:47:36,514 epoch 1 - iter 792/1984 - loss 0.69613444 - time (sec): 37.38 - samples/sec: 1762.40 - lr: 0.000020 - momentum: 0.000000
|
78 |
+
2023-10-17 12:47:45,647 epoch 1 - iter 990/1984 - loss 0.58337391 - time (sec): 46.52 - samples/sec: 1784.74 - lr: 0.000025 - momentum: 0.000000
|
79 |
+
2023-10-17 12:47:54,968 epoch 1 - iter 1188/1984 - loss 0.50718607 - time (sec): 55.84 - samples/sec: 1799.80 - lr: 0.000030 - momentum: 0.000000
|
80 |
+
2023-10-17 12:48:04,334 epoch 1 - iter 1386/1984 - loss 0.45379013 - time (sec): 65.20 - samples/sec: 1804.34 - lr: 0.000035 - momentum: 0.000000
|
81 |
+
2023-10-17 12:48:13,644 epoch 1 - iter 1584/1984 - loss 0.42012684 - time (sec): 74.51 - samples/sec: 1783.88 - lr: 0.000040 - momentum: 0.000000
|
82 |
+
2023-10-17 12:48:22,679 epoch 1 - iter 1782/1984 - loss 0.39242579 - time (sec): 83.55 - samples/sec: 1771.63 - lr: 0.000045 - momentum: 0.000000
|
83 |
+
2023-10-17 12:48:31,375 epoch 1 - iter 1980/1984 - loss 0.36710615 - time (sec): 92.24 - samples/sec: 1774.74 - lr: 0.000050 - momentum: 0.000000
|
84 |
+
2023-10-17 12:48:31,545 ----------------------------------------------------------------------------------------------------
|
85 |
+
2023-10-17 12:48:31,545 EPOCH 1 done: loss 0.3670 - lr: 0.000050
|
86 |
+
2023-10-17 12:48:34,796 DEV : loss 0.08705931901931763 - f1-score (micro avg) 0.7042
|
87 |
+
2023-10-17 12:48:34,817 saving best model
|
88 |
+
2023-10-17 12:48:35,263 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-17 12:48:44,219 epoch 2 - iter 198/1984 - loss 0.13447725 - time (sec): 8.95 - samples/sec: 1684.39 - lr: 0.000049 - momentum: 0.000000
|
90 |
+
2023-10-17 12:48:53,342 epoch 2 - iter 396/1984 - loss 0.12519486 - time (sec): 18.08 - samples/sec: 1746.79 - lr: 0.000049 - momentum: 0.000000
|
91 |
+
2023-10-17 12:49:02,617 epoch 2 - iter 594/1984 - loss 0.12768946 - time (sec): 27.35 - samples/sec: 1716.69 - lr: 0.000048 - momentum: 0.000000
|
92 |
+
2023-10-17 12:49:12,897 epoch 2 - iter 792/1984 - loss 0.12434640 - time (sec): 37.63 - samples/sec: 1686.98 - lr: 0.000048 - momentum: 0.000000
|
93 |
+
2023-10-17 12:49:22,703 epoch 2 - iter 990/1984 - loss 0.12438353 - time (sec): 47.44 - samples/sec: 1692.29 - lr: 0.000047 - momentum: 0.000000
|
94 |
+
2023-10-17 12:49:31,761 epoch 2 - iter 1188/1984 - loss 0.12321391 - time (sec): 56.50 - samples/sec: 1711.71 - lr: 0.000047 - momentum: 0.000000
|
95 |
+
2023-10-17 12:49:40,930 epoch 2 - iter 1386/1984 - loss 0.12223100 - time (sec): 65.67 - samples/sec: 1715.45 - lr: 0.000046 - momentum: 0.000000
|
96 |
+
2023-10-17 12:49:50,575 epoch 2 - iter 1584/1984 - loss 0.12393554 - time (sec): 75.31 - samples/sec: 1718.04 - lr: 0.000046 - momentum: 0.000000
|
97 |
+
2023-10-17 12:49:59,914 epoch 2 - iter 1782/1984 - loss 0.12338924 - time (sec): 84.65 - samples/sec: 1734.21 - lr: 0.000045 - momentum: 0.000000
|
98 |
+
2023-10-17 12:50:09,035 epoch 2 - iter 1980/1984 - loss 0.12187740 - time (sec): 93.77 - samples/sec: 1745.61 - lr: 0.000044 - momentum: 0.000000
|
99 |
+
2023-10-17 12:50:09,216 ----------------------------------------------------------------------------------------------------
|
100 |
+
2023-10-17 12:50:09,217 EPOCH 2 done: loss 0.1217 - lr: 0.000044
|
101 |
+
2023-10-17 12:50:13,258 DEV : loss 0.11133266240358353 - f1-score (micro avg) 0.7549
|
102 |
+
2023-10-17 12:50:13,279 saving best model
|
103 |
+
2023-10-17 12:50:13,803 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-17 12:50:23,285 epoch 3 - iter 198/1984 - loss 0.10677996 - time (sec): 9.48 - samples/sec: 1681.00 - lr: 0.000044 - momentum: 0.000000
|
105 |
+
2023-10-17 12:50:32,630 epoch 3 - iter 396/1984 - loss 0.10024302 - time (sec): 18.82 - samples/sec: 1736.37 - lr: 0.000043 - momentum: 0.000000
|
106 |
+
2023-10-17 12:50:41,612 epoch 3 - iter 594/1984 - loss 0.09584361 - time (sec): 27.80 - samples/sec: 1762.32 - lr: 0.000043 - momentum: 0.000000
|
107 |
+
2023-10-17 12:50:50,953 epoch 3 - iter 792/1984 - loss 0.09534706 - time (sec): 37.15 - samples/sec: 1757.15 - lr: 0.000042 - momentum: 0.000000
|
108 |
+
2023-10-17 12:51:00,042 epoch 3 - iter 990/1984 - loss 0.09438992 - time (sec): 46.23 - samples/sec: 1747.78 - lr: 0.000042 - momentum: 0.000000
|
109 |
+
2023-10-17 12:51:09,296 epoch 3 - iter 1188/1984 - loss 0.09441971 - time (sec): 55.49 - samples/sec: 1746.25 - lr: 0.000041 - momentum: 0.000000
|
110 |
+
2023-10-17 12:51:18,660 epoch 3 - iter 1386/1984 - loss 0.09258276 - time (sec): 64.85 - samples/sec: 1752.18 - lr: 0.000041 - momentum: 0.000000
|
111 |
+
2023-10-17 12:51:27,819 epoch 3 - iter 1584/1984 - loss 0.09280077 - time (sec): 74.01 - samples/sec: 1778.28 - lr: 0.000040 - momentum: 0.000000
|
112 |
+
2023-10-17 12:51:36,996 epoch 3 - iter 1782/1984 - loss 0.09287512 - time (sec): 83.19 - samples/sec: 1776.15 - lr: 0.000039 - momentum: 0.000000
|
113 |
+
2023-10-17 12:51:46,023 epoch 3 - iter 1980/1984 - loss 0.09227744 - time (sec): 92.22 - samples/sec: 1774.99 - lr: 0.000039 - momentum: 0.000000
|
114 |
+
2023-10-17 12:51:46,205 ----------------------------------------------------------------------------------------------------
|
115 |
+
2023-10-17 12:51:46,205 EPOCH 3 done: loss 0.0921 - lr: 0.000039
|
116 |
+
2023-10-17 12:51:49,815 DEV : loss 0.12508752942085266 - f1-score (micro avg) 0.7457
|
117 |
+
2023-10-17 12:51:49,839 ----------------------------------------------------------------------------------------------------
|
118 |
+
2023-10-17 12:51:59,362 epoch 4 - iter 198/1984 - loss 0.07168588 - time (sec): 9.52 - samples/sec: 1798.75 - lr: 0.000038 - momentum: 0.000000
|
119 |
+
2023-10-17 12:52:08,583 epoch 4 - iter 396/1984 - loss 0.06670880 - time (sec): 18.74 - samples/sec: 1756.76 - lr: 0.000038 - momentum: 0.000000
|
120 |
+
2023-10-17 12:52:17,944 epoch 4 - iter 594/1984 - loss 0.06287904 - time (sec): 28.10 - samples/sec: 1742.76 - lr: 0.000037 - momentum: 0.000000
|
121 |
+
2023-10-17 12:52:27,311 epoch 4 - iter 792/1984 - loss 0.06538020 - time (sec): 37.47 - samples/sec: 1735.71 - lr: 0.000037 - momentum: 0.000000
|
122 |
+
2023-10-17 12:52:36,780 epoch 4 - iter 990/1984 - loss 0.06605263 - time (sec): 46.94 - samples/sec: 1743.88 - lr: 0.000036 - momentum: 0.000000
|
123 |
+
2023-10-17 12:52:46,097 epoch 4 - iter 1188/1984 - loss 0.06749132 - time (sec): 56.26 - samples/sec: 1734.01 - lr: 0.000036 - momentum: 0.000000
|
124 |
+
2023-10-17 12:52:55,393 epoch 4 - iter 1386/1984 - loss 0.07064539 - time (sec): 65.55 - samples/sec: 1746.22 - lr: 0.000035 - momentum: 0.000000
|
125 |
+
2023-10-17 12:53:04,548 epoch 4 - iter 1584/1984 - loss 0.07083371 - time (sec): 74.71 - samples/sec: 1753.43 - lr: 0.000034 - momentum: 0.000000
|
126 |
+
2023-10-17 12:53:13,831 epoch 4 - iter 1782/1984 - loss 0.07085589 - time (sec): 83.99 - samples/sec: 1755.38 - lr: 0.000034 - momentum: 0.000000
|
127 |
+
2023-10-17 12:53:23,039 epoch 4 - iter 1980/1984 - loss 0.07179751 - time (sec): 93.20 - samples/sec: 1755.99 - lr: 0.000033 - momentum: 0.000000
|
128 |
+
2023-10-17 12:53:23,235 ----------------------------------------------------------------------------------------------------
|
129 |
+
2023-10-17 12:53:23,235 EPOCH 4 done: loss 0.0719 - lr: 0.000033
|
130 |
+
2023-10-17 12:53:26,874 DEV : loss 0.15007272362709045 - f1-score (micro avg) 0.7434
|
131 |
+
2023-10-17 12:53:26,898 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-17 12:53:36,403 epoch 5 - iter 198/1984 - loss 0.05191204 - time (sec): 9.50 - samples/sec: 1735.42 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-17 12:53:45,521 epoch 5 - iter 396/1984 - loss 0.04935558 - time (sec): 18.62 - samples/sec: 1774.10 - lr: 0.000032 - momentum: 0.000000
|
134 |
+
2023-10-17 12:53:54,441 epoch 5 - iter 594/1984 - loss 0.05488619 - time (sec): 27.54 - samples/sec: 1768.34 - lr: 0.000032 - momentum: 0.000000
|
135 |
+
2023-10-17 12:54:03,624 epoch 5 - iter 792/1984 - loss 0.05643838 - time (sec): 36.72 - samples/sec: 1766.61 - lr: 0.000031 - momentum: 0.000000
|
136 |
+
2023-10-17 12:54:12,819 epoch 5 - iter 990/1984 - loss 0.05590674 - time (sec): 45.92 - samples/sec: 1773.21 - lr: 0.000031 - momentum: 0.000000
|
137 |
+
2023-10-17 12:54:21,976 epoch 5 - iter 1188/1984 - loss 0.05482986 - time (sec): 55.08 - samples/sec: 1755.80 - lr: 0.000030 - momentum: 0.000000
|
138 |
+
2023-10-17 12:54:31,108 epoch 5 - iter 1386/1984 - loss 0.05386415 - time (sec): 64.21 - samples/sec: 1772.47 - lr: 0.000029 - momentum: 0.000000
|
139 |
+
2023-10-17 12:54:40,403 epoch 5 - iter 1584/1984 - loss 0.05340092 - time (sec): 73.50 - samples/sec: 1770.69 - lr: 0.000029 - momentum: 0.000000
|
140 |
+
2023-10-17 12:54:49,745 epoch 5 - iter 1782/1984 - loss 0.05379444 - time (sec): 82.85 - samples/sec: 1771.56 - lr: 0.000028 - momentum: 0.000000
|
141 |
+
2023-10-17 12:54:59,027 epoch 5 - iter 1980/1984 - loss 0.05432464 - time (sec): 92.13 - samples/sec: 1776.36 - lr: 0.000028 - momentum: 0.000000
|
142 |
+
2023-10-17 12:54:59,213 ----------------------------------------------------------------------------------------------------
|
143 |
+
2023-10-17 12:54:59,214 EPOCH 5 done: loss 0.0543 - lr: 0.000028
|
144 |
+
2023-10-17 12:55:02,841 DEV : loss 0.20846031606197357 - f1-score (micro avg) 0.7471
|
145 |
+
2023-10-17 12:55:02,866 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-17 12:55:12,114 epoch 6 - iter 198/1984 - loss 0.03953401 - time (sec): 9.25 - samples/sec: 1769.03 - lr: 0.000027 - momentum: 0.000000
|
147 |
+
2023-10-17 12:55:21,364 epoch 6 - iter 396/1984 - loss 0.03812773 - time (sec): 18.50 - samples/sec: 1765.39 - lr: 0.000027 - momentum: 0.000000
|
148 |
+
2023-10-17 12:55:30,551 epoch 6 - iter 594/1984 - loss 0.04268890 - time (sec): 27.68 - samples/sec: 1778.53 - lr: 0.000026 - momentum: 0.000000
|
149 |
+
2023-10-17 12:55:40,019 epoch 6 - iter 792/1984 - loss 0.04138806 - time (sec): 37.15 - samples/sec: 1769.41 - lr: 0.000026 - momentum: 0.000000
|
150 |
+
2023-10-17 12:55:49,073 epoch 6 - iter 990/1984 - loss 0.04025963 - time (sec): 46.21 - samples/sec: 1763.61 - lr: 0.000025 - momentum: 0.000000
|
151 |
+
2023-10-17 12:55:58,111 epoch 6 - iter 1188/1984 - loss 0.03971711 - time (sec): 55.24 - samples/sec: 1746.68 - lr: 0.000024 - momentum: 0.000000
|
152 |
+
2023-10-17 12:56:07,294 epoch 6 - iter 1386/1984 - loss 0.04025272 - time (sec): 64.43 - samples/sec: 1752.53 - lr: 0.000024 - momentum: 0.000000
|
153 |
+
2023-10-17 12:56:16,467 epoch 6 - iter 1584/1984 - loss 0.03959126 - time (sec): 73.60 - samples/sec: 1771.43 - lr: 0.000023 - momentum: 0.000000
|
154 |
+
2023-10-17 12:56:25,663 epoch 6 - iter 1782/1984 - loss 0.03963302 - time (sec): 82.80 - samples/sec: 1766.72 - lr: 0.000023 - momentum: 0.000000
|
155 |
+
2023-10-17 12:56:35,200 epoch 6 - iter 1980/1984 - loss 0.03953747 - time (sec): 92.33 - samples/sec: 1772.28 - lr: 0.000022 - momentum: 0.000000
|
156 |
+
2023-10-17 12:56:35,381 ----------------------------------------------------------------------------------------------------
|
157 |
+
2023-10-17 12:56:35,381 EPOCH 6 done: loss 0.0396 - lr: 0.000022
|
158 |
+
2023-10-17 12:56:39,041 DEV : loss 0.21264401078224182 - f1-score (micro avg) 0.7517
|
159 |
+
2023-10-17 12:56:39,065 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-17 12:56:48,296 epoch 7 - iter 198/1984 - loss 0.02510474 - time (sec): 9.23 - samples/sec: 1692.24 - lr: 0.000022 - momentum: 0.000000
|
161 |
+
2023-10-17 12:56:57,912 epoch 7 - iter 396/1984 - loss 0.02487195 - time (sec): 18.85 - samples/sec: 1760.14 - lr: 0.000021 - momentum: 0.000000
|
162 |
+
2023-10-17 12:57:07,100 epoch 7 - iter 594/1984 - loss 0.02627481 - time (sec): 28.03 - samples/sec: 1757.59 - lr: 0.000021 - momentum: 0.000000
|
163 |
+
2023-10-17 12:57:16,372 epoch 7 - iter 792/1984 - loss 0.03015138 - time (sec): 37.31 - samples/sec: 1746.05 - lr: 0.000020 - momentum: 0.000000
|
164 |
+
2023-10-17 12:57:25,611 epoch 7 - iter 990/1984 - loss 0.02986521 - time (sec): 46.54 - samples/sec: 1749.85 - lr: 0.000019 - momentum: 0.000000
|
165 |
+
2023-10-17 12:57:34,638 epoch 7 - iter 1188/1984 - loss 0.02921708 - time (sec): 55.57 - samples/sec: 1768.09 - lr: 0.000019 - momentum: 0.000000
|
166 |
+
2023-10-17 12:57:44,038 epoch 7 - iter 1386/1984 - loss 0.02876629 - time (sec): 64.97 - samples/sec: 1773.71 - lr: 0.000018 - momentum: 0.000000
|
167 |
+
2023-10-17 12:57:53,266 epoch 7 - iter 1584/1984 - loss 0.02894997 - time (sec): 74.20 - samples/sec: 1770.84 - lr: 0.000018 - momentum: 0.000000
|
168 |
+
2023-10-17 12:58:02,591 epoch 7 - iter 1782/1984 - loss 0.03019572 - time (sec): 83.52 - samples/sec: 1765.81 - lr: 0.000017 - momentum: 0.000000
|
169 |
+
2023-10-17 12:58:11,832 epoch 7 - iter 1980/1984 - loss 0.02983351 - time (sec): 92.77 - samples/sec: 1764.81 - lr: 0.000017 - momentum: 0.000000
|
170 |
+
2023-10-17 12:58:12,018 ----------------------------------------------------------------------------------------------------
|
171 |
+
2023-10-17 12:58:12,018 EPOCH 7 done: loss 0.0299 - lr: 0.000017
|
172 |
+
2023-10-17 12:58:16,123 DEV : loss 0.23210309445858002 - f1-score (micro avg) 0.7468
|
173 |
+
2023-10-17 12:58:16,144 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-10-17 12:58:25,261 epoch 8 - iter 198/1984 - loss 0.02662398 - time (sec): 9.12 - samples/sec: 1763.88 - lr: 0.000016 - momentum: 0.000000
|
175 |
+
2023-10-17 12:58:34,458 epoch 8 - iter 396/1984 - loss 0.02320812 - time (sec): 18.31 - samples/sec: 1753.52 - lr: 0.000016 - momentum: 0.000000
|
176 |
+
2023-10-17 12:58:43,623 epoch 8 - iter 594/1984 - loss 0.02078829 - time (sec): 27.48 - samples/sec: 1758.96 - lr: 0.000015 - momentum: 0.000000
|
177 |
+
2023-10-17 12:58:53,133 epoch 8 - iter 792/1984 - loss 0.01981068 - time (sec): 36.99 - samples/sec: 1754.70 - lr: 0.000014 - momentum: 0.000000
|
178 |
+
2023-10-17 12:59:02,118 epoch 8 - iter 990/1984 - loss 0.02018388 - time (sec): 45.97 - samples/sec: 1780.30 - lr: 0.000014 - momentum: 0.000000
|
179 |
+
2023-10-17 12:59:11,160 epoch 8 - iter 1188/1984 - loss 0.02143587 - time (sec): 55.02 - samples/sec: 1768.00 - lr: 0.000013 - momentum: 0.000000
|
180 |
+
2023-10-17 12:59:20,403 epoch 8 - iter 1386/1984 - loss 0.02108215 - time (sec): 64.26 - samples/sec: 1779.78 - lr: 0.000013 - momentum: 0.000000
|
181 |
+
2023-10-17 12:59:29,551 epoch 8 - iter 1584/1984 - loss 0.02050008 - time (sec): 73.41 - samples/sec: 1790.79 - lr: 0.000012 - momentum: 0.000000
|
182 |
+
2023-10-17 12:59:38,685 epoch 8 - iter 1782/1984 - loss 0.02034437 - time (sec): 82.54 - samples/sec: 1790.41 - lr: 0.000012 - momentum: 0.000000
|
183 |
+
2023-10-17 12:59:47,933 epoch 8 - iter 1980/1984 - loss 0.02018234 - time (sec): 91.79 - samples/sec: 1782.77 - lr: 0.000011 - momentum: 0.000000
|
184 |
+
2023-10-17 12:59:48,133 ----------------------------------------------------------------------------------------------------
|
185 |
+
2023-10-17 12:59:48,133 EPOCH 8 done: loss 0.0203 - lr: 0.000011
|
186 |
+
2023-10-17 12:59:51,750 DEV : loss 0.23719041049480438 - f1-score (micro avg) 0.7626
|
187 |
+
2023-10-17 12:59:51,774 saving best model
|
188 |
+
2023-10-17 12:59:52,342 ----------------------------------------------------------------------------------------------------
|
189 |
+
2023-10-17 13:00:01,612 epoch 9 - iter 198/1984 - loss 0.01128630 - time (sec): 9.27 - samples/sec: 1795.34 - lr: 0.000011 - momentum: 0.000000
|
190 |
+
2023-10-17 13:00:10,749 epoch 9 - iter 396/1984 - loss 0.00943051 - time (sec): 18.41 - samples/sec: 1820.75 - lr: 0.000010 - momentum: 0.000000
|
191 |
+
2023-10-17 13:00:19,875 epoch 9 - iter 594/1984 - loss 0.01123883 - time (sec): 27.53 - samples/sec: 1777.99 - lr: 0.000009 - momentum: 0.000000
|
192 |
+
2023-10-17 13:00:29,376 epoch 9 - iter 792/1984 - loss 0.01104369 - time (sec): 37.03 - samples/sec: 1767.64 - lr: 0.000009 - momentum: 0.000000
|
193 |
+
2023-10-17 13:00:38,816 epoch 9 - iter 990/1984 - loss 0.01110156 - time (sec): 46.47 - samples/sec: 1763.83 - lr: 0.000008 - momentum: 0.000000
|
194 |
+
2023-10-17 13:00:48,150 epoch 9 - iter 1188/1984 - loss 0.01314728 - time (sec): 55.81 - samples/sec: 1775.48 - lr: 0.000008 - momentum: 0.000000
|
195 |
+
2023-10-17 13:00:57,267 epoch 9 - iter 1386/1984 - loss 0.01317730 - time (sec): 64.92 - samples/sec: 1764.93 - lr: 0.000007 - momentum: 0.000000
|
196 |
+
2023-10-17 13:01:06,731 epoch 9 - iter 1584/1984 - loss 0.01382017 - time (sec): 74.39 - samples/sec: 1760.10 - lr: 0.000007 - momentum: 0.000000
|
197 |
+
2023-10-17 13:01:15,926 epoch 9 - iter 1782/1984 - loss 0.01358330 - time (sec): 83.58 - samples/sec: 1759.37 - lr: 0.000006 - momentum: 0.000000
|
198 |
+
2023-10-17 13:01:25,451 epoch 9 - iter 1980/1984 - loss 0.01373408 - time (sec): 93.11 - samples/sec: 1756.06 - lr: 0.000006 - momentum: 0.000000
|
199 |
+
2023-10-17 13:01:25,664 ----------------------------------------------------------------------------------------------------
|
200 |
+
2023-10-17 13:01:25,665 EPOCH 9 done: loss 0.0138 - lr: 0.000006
|
201 |
+
2023-10-17 13:01:29,408 DEV : loss 0.2416975200176239 - f1-score (micro avg) 0.7531
|
202 |
+
2023-10-17 13:01:29,434 ----------------------------------------------------------------------------------------------------
|
203 |
+
2023-10-17 13:01:38,722 epoch 10 - iter 198/1984 - loss 0.00724275 - time (sec): 9.29 - samples/sec: 1731.53 - lr: 0.000005 - momentum: 0.000000
|
204 |
+
2023-10-17 13:01:48,062 epoch 10 - iter 396/1984 - loss 0.00878620 - time (sec): 18.63 - samples/sec: 1741.75 - lr: 0.000004 - momentum: 0.000000
|
205 |
+
2023-10-17 13:01:57,341 epoch 10 - iter 594/1984 - loss 0.00792020 - time (sec): 27.91 - samples/sec: 1788.05 - lr: 0.000004 - momentum: 0.000000
|
206 |
+
2023-10-17 13:02:06,885 epoch 10 - iter 792/1984 - loss 0.00864729 - time (sec): 37.45 - samples/sec: 1766.05 - lr: 0.000003 - momentum: 0.000000
|
207 |
+
2023-10-17 13:02:16,926 epoch 10 - iter 990/1984 - loss 0.00875296 - time (sec): 47.49 - samples/sec: 1730.47 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-17 13:02:26,316 epoch 10 - iter 1188/1984 - loss 0.00957040 - time (sec): 56.88 - samples/sec: 1731.11 - lr: 0.000002 - momentum: 0.000000
|
209 |
+
2023-10-17 13:02:35,536 epoch 10 - iter 1386/1984 - loss 0.00980326 - time (sec): 66.10 - samples/sec: 1733.47 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-17 13:02:44,848 epoch 10 - iter 1584/1984 - loss 0.00931466 - time (sec): 75.41 - samples/sec: 1747.44 - lr: 0.000001 - momentum: 0.000000
|
211 |
+
2023-10-17 13:02:53,940 epoch 10 - iter 1782/1984 - loss 0.00906989 - time (sec): 84.50 - samples/sec: 1750.28 - lr: 0.000001 - momentum: 0.000000
|
212 |
+
2023-10-17 13:03:03,073 epoch 10 - iter 1980/1984 - loss 0.00906925 - time (sec): 93.64 - samples/sec: 1748.58 - lr: 0.000000 - momentum: 0.000000
|
213 |
+
2023-10-17 13:03:03,259 ----------------------------------------------------------------------------------------------------
|
214 |
+
2023-10-17 13:03:03,259 EPOCH 10 done: loss 0.0092 - lr: 0.000000
|
215 |
+
2023-10-17 13:03:06,977 DEV : loss 0.25551512837409973 - f1-score (micro avg) 0.7566
|
216 |
+
2023-10-17 13:03:07,490 ----------------------------------------------------------------------------------------------------
|
217 |
+
2023-10-17 13:03:07,492 Loading model from best epoch ...
|
218 |
+
2023-10-17 13:03:09,090 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
219 |
+
2023-10-17 13:03:12,571
|
220 |
+
Results:
|
221 |
+
- F-score (micro) 0.7774
|
222 |
+
- F-score (macro) 0.6822
|
223 |
+
- Accuracy 0.6592
|
224 |
+
|
225 |
+
By class:
|
226 |
+
precision recall f1-score support
|
227 |
+
|
228 |
+
LOC 0.8343 0.8611 0.8475 655
|
229 |
+
PER 0.6920 0.7758 0.7315 223
|
230 |
+
ORG 0.5192 0.4252 0.4675 127
|
231 |
+
|
232 |
+
micro avg 0.7680 0.7871 0.7774 1005
|
233 |
+
macro avg 0.6819 0.6874 0.6822 1005
|
234 |
+
weighted avg 0.7629 0.7871 0.7737 1005
|
235 |
+
|
236 |
+
2023-10-17 13:03:12,571 ----------------------------------------------------------------------------------------------------
|