Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +242 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c67017bd3ec2300cd184067f1a28f8fbc7306d13ab24880755d9caffcf671885
|
3 |
+
size 443311111
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 23:28:56 0.0000 0.3509 0.0934 0.6601 0.7602 0.7066 0.5690
|
3 |
+
2 23:29:58 0.0000 0.1053 0.0894 0.7198 0.7557 0.7373 0.5996
|
4 |
+
3 23:31:02 0.0000 0.0730 0.1066 0.7214 0.7557 0.7381 0.6034
|
5 |
+
4 23:32:05 0.0000 0.0530 0.1528 0.7147 0.7681 0.7405 0.6128
|
6 |
+
5 23:33:08 0.0000 0.0424 0.1442 0.7086 0.7704 0.7382 0.6021
|
7 |
+
6 23:34:11 0.0000 0.0315 0.1808 0.7371 0.7579 0.7474 0.6204
|
8 |
+
7 23:35:15 0.0000 0.0236 0.1939 0.7370 0.7704 0.7533 0.6259
|
9 |
+
8 23:36:18 0.0000 0.0179 0.2065 0.7327 0.7658 0.7489 0.6194
|
10 |
+
9 23:37:20 0.0000 0.0122 0.2183 0.7348 0.7681 0.7511 0.6224
|
11 |
+
10 23:38:23 0.0000 0.0086 0.2139 0.7417 0.7794 0.7601 0.6310
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 23:27:53,960 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 23:27:53,961 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 23:27:53,961 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 23:27:53,961 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
53 |
+
2023-10-13 23:27:53,961 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 23:27:53,961 Train: 7936 sentences
|
55 |
+
2023-10-13 23:27:53,961 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 23:27:53,961 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 23:27:53,961 Training Params:
|
58 |
+
2023-10-13 23:27:53,961 - learning_rate: "5e-05"
|
59 |
+
2023-10-13 23:27:53,961 - mini_batch_size: "8"
|
60 |
+
2023-10-13 23:27:53,961 - max_epochs: "10"
|
61 |
+
2023-10-13 23:27:53,961 - shuffle: "True"
|
62 |
+
2023-10-13 23:27:53,961 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 23:27:53,961 Plugins:
|
64 |
+
2023-10-13 23:27:53,961 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 23:27:53,961 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 23:27:53,961 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 23:27:53,961 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 23:27:53,961 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 23:27:53,961 Computation:
|
70 |
+
2023-10-13 23:27:53,961 - compute on device: cuda:0
|
71 |
+
2023-10-13 23:27:53,962 - embedding storage: none
|
72 |
+
2023-10-13 23:27:53,962 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 23:27:53,962 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
|
74 |
+
2023-10-13 23:27:53,962 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 23:27:53,962 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 23:28:00,314 epoch 1 - iter 99/992 - loss 1.84420524 - time (sec): 6.35 - samples/sec: 2623.00 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-13 23:28:06,201 epoch 1 - iter 198/992 - loss 1.10827375 - time (sec): 12.24 - samples/sec: 2677.78 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-13 23:28:12,435 epoch 1 - iter 297/992 - loss 0.80875373 - time (sec): 18.47 - samples/sec: 2680.34 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-13 23:28:18,266 epoch 1 - iter 396/992 - loss 0.66063021 - time (sec): 24.30 - samples/sec: 2704.15 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-13 23:28:24,336 epoch 1 - iter 495/992 - loss 0.56248912 - time (sec): 30.37 - samples/sec: 2713.70 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-13 23:28:29,967 epoch 1 - iter 594/992 - loss 0.49232335 - time (sec): 36.00 - samples/sec: 2749.86 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-13 23:28:35,712 epoch 1 - iter 693/992 - loss 0.44224564 - time (sec): 41.75 - samples/sec: 2760.11 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-13 23:28:41,632 epoch 1 - iter 792/992 - loss 0.40489892 - time (sec): 47.67 - samples/sec: 2764.55 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-13 23:28:47,351 epoch 1 - iter 891/992 - loss 0.37416440 - time (sec): 53.39 - samples/sec: 2768.49 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-13 23:28:53,006 epoch 1 - iter 990/992 - loss 0.35114103 - time (sec): 59.04 - samples/sec: 2773.46 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-13 23:28:53,112 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 23:28:53,112 EPOCH 1 done: loss 0.3509 - lr: 0.000050
|
88 |
+
2023-10-13 23:28:56,206 DEV : loss 0.0934109166264534 - f1-score (micro avg) 0.7066
|
89 |
+
2023-10-13 23:28:56,226 saving best model
|
90 |
+
2023-10-13 23:28:56,661 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 23:29:02,883 epoch 2 - iter 99/992 - loss 0.12408130 - time (sec): 6.22 - samples/sec: 2830.88 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-13 23:29:09,014 epoch 2 - iter 198/992 - loss 0.11801383 - time (sec): 12.35 - samples/sec: 2720.96 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-13 23:29:14,757 epoch 2 - iter 297/992 - loss 0.11422384 - time (sec): 18.09 - samples/sec: 2769.68 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-13 23:29:20,479 epoch 2 - iter 396/992 - loss 0.11197551 - time (sec): 23.82 - samples/sec: 2753.22 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-13 23:29:26,220 epoch 2 - iter 495/992 - loss 0.11065679 - time (sec): 29.56 - samples/sec: 2763.91 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-13 23:29:32,096 epoch 2 - iter 594/992 - loss 0.10893379 - time (sec): 35.43 - samples/sec: 2759.56 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-13 23:29:37,819 epoch 2 - iter 693/992 - loss 0.10716282 - time (sec): 41.16 - samples/sec: 2765.86 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-13 23:29:43,750 epoch 2 - iter 792/992 - loss 0.10687508 - time (sec): 47.09 - samples/sec: 2774.79 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-13 23:29:49,391 epoch 2 - iter 891/992 - loss 0.10650512 - time (sec): 52.73 - samples/sec: 2772.57 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-13 23:29:55,474 epoch 2 - iter 990/992 - loss 0.10524813 - time (sec): 58.81 - samples/sec: 2784.28 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-13 23:29:55,580 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 23:29:55,580 EPOCH 2 done: loss 0.1053 - lr: 0.000044
|
103 |
+
2023-10-13 23:29:58,941 DEV : loss 0.0894036665558815 - f1-score (micro avg) 0.7373
|
104 |
+
2023-10-13 23:29:58,961 saving best model
|
105 |
+
2023-10-13 23:29:59,934 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 23:30:05,864 epoch 3 - iter 99/992 - loss 0.06449001 - time (sec): 5.93 - samples/sec: 2757.86 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-13 23:30:11,666 epoch 3 - iter 198/992 - loss 0.06269725 - time (sec): 11.73 - samples/sec: 2753.00 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-13 23:30:17,362 epoch 3 - iter 297/992 - loss 0.06703869 - time (sec): 17.42 - samples/sec: 2775.83 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-13 23:30:23,235 epoch 3 - iter 396/992 - loss 0.06854271 - time (sec): 23.30 - samples/sec: 2803.73 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-13 23:30:29,364 epoch 3 - iter 495/992 - loss 0.07038135 - time (sec): 29.43 - samples/sec: 2792.79 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-13 23:30:35,163 epoch 3 - iter 594/992 - loss 0.07075691 - time (sec): 35.22 - samples/sec: 2788.96 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-13 23:30:41,272 epoch 3 - iter 693/992 - loss 0.07173481 - time (sec): 41.33 - samples/sec: 2773.31 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-13 23:30:47,040 epoch 3 - iter 792/992 - loss 0.07257445 - time (sec): 47.10 - samples/sec: 2771.06 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-13 23:30:52,852 epoch 3 - iter 891/992 - loss 0.07399709 - time (sec): 52.91 - samples/sec: 2775.77 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-13 23:30:58,651 epoch 3 - iter 990/992 - loss 0.07304166 - time (sec): 58.71 - samples/sec: 2787.44 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-13 23:30:58,762 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 23:30:58,762 EPOCH 3 done: loss 0.0730 - lr: 0.000039
|
118 |
+
2023-10-13 23:31:02,203 DEV : loss 0.10655300319194794 - f1-score (micro avg) 0.7381
|
119 |
+
2023-10-13 23:31:02,224 saving best model
|
120 |
+
2023-10-13 23:31:02,734 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 23:31:08,758 epoch 4 - iter 99/992 - loss 0.04574350 - time (sec): 6.02 - samples/sec: 2832.57 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-13 23:31:14,898 epoch 4 - iter 198/992 - loss 0.04764950 - time (sec): 12.16 - samples/sec: 2726.71 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-13 23:31:20,551 epoch 4 - iter 297/992 - loss 0.04943979 - time (sec): 17.81 - samples/sec: 2747.51 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-13 23:31:26,202 epoch 4 - iter 396/992 - loss 0.05038291 - time (sec): 23.46 - samples/sec: 2783.86 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-13 23:31:32,240 epoch 4 - iter 495/992 - loss 0.05076880 - time (sec): 29.50 - samples/sec: 2764.50 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-13 23:31:38,242 epoch 4 - iter 594/992 - loss 0.05156694 - time (sec): 35.50 - samples/sec: 2763.16 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-13 23:31:43,936 epoch 4 - iter 693/992 - loss 0.05246850 - time (sec): 41.19 - samples/sec: 2782.77 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-13 23:31:49,696 epoch 4 - iter 792/992 - loss 0.05316471 - time (sec): 46.95 - samples/sec: 2783.75 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-13 23:31:55,681 epoch 4 - iter 891/992 - loss 0.05363958 - time (sec): 52.94 - samples/sec: 2787.31 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-13 23:32:01,604 epoch 4 - iter 990/992 - loss 0.05300719 - time (sec): 58.86 - samples/sec: 2783.74 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-13 23:32:01,704 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 23:32:01,705 EPOCH 4 done: loss 0.0530 - lr: 0.000033
|
133 |
+
2023-10-13 23:32:05,121 DEV : loss 0.15282906591892242 - f1-score (micro avg) 0.7405
|
134 |
+
2023-10-13 23:32:05,142 saving best model
|
135 |
+
2023-10-13 23:32:05,677 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-10-13 23:32:11,818 epoch 5 - iter 99/992 - loss 0.03701588 - time (sec): 6.14 - samples/sec: 2763.56 - lr: 0.000033 - momentum: 0.000000
|
137 |
+
2023-10-13 23:32:17,742 epoch 5 - iter 198/992 - loss 0.03627021 - time (sec): 12.06 - samples/sec: 2740.35 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-13 23:32:24,414 epoch 5 - iter 297/992 - loss 0.03801493 - time (sec): 18.73 - samples/sec: 2692.51 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-13 23:32:30,313 epoch 5 - iter 396/992 - loss 0.04018940 - time (sec): 24.63 - samples/sec: 2697.06 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-13 23:32:36,272 epoch 5 - iter 495/992 - loss 0.03982197 - time (sec): 30.59 - samples/sec: 2710.43 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-13 23:32:42,145 epoch 5 - iter 594/992 - loss 0.04135012 - time (sec): 36.46 - samples/sec: 2712.40 - lr: 0.000030 - momentum: 0.000000
|
142 |
+
2023-10-13 23:32:47,697 epoch 5 - iter 693/992 - loss 0.04198723 - time (sec): 42.02 - samples/sec: 2723.82 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-13 23:32:53,463 epoch 5 - iter 792/992 - loss 0.04154554 - time (sec): 47.78 - samples/sec: 2733.14 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-10-13 23:32:59,465 epoch 5 - iter 891/992 - loss 0.04180375 - time (sec): 53.78 - samples/sec: 2751.31 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-13 23:33:05,084 epoch 5 - iter 990/992 - loss 0.04232641 - time (sec): 59.40 - samples/sec: 2752.10 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-10-13 23:33:05,307 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-13 23:33:05,307 EPOCH 5 done: loss 0.0424 - lr: 0.000028
|
148 |
+
2023-10-13 23:33:08,786 DEV : loss 0.14422008395195007 - f1-score (micro avg) 0.7382
|
149 |
+
2023-10-13 23:33:08,807 ----------------------------------------------------------------------------------------------------
|
150 |
+
2023-10-13 23:33:14,515 epoch 6 - iter 99/992 - loss 0.03270406 - time (sec): 5.71 - samples/sec: 2753.34 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-13 23:33:20,341 epoch 6 - iter 198/992 - loss 0.03440711 - time (sec): 11.53 - samples/sec: 2762.06 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-13 23:33:26,151 epoch 6 - iter 297/992 - loss 0.03164332 - time (sec): 17.34 - samples/sec: 2786.75 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-13 23:33:32,289 epoch 6 - iter 396/992 - loss 0.03087269 - time (sec): 23.48 - samples/sec: 2774.22 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-13 23:33:38,140 epoch 6 - iter 495/992 - loss 0.03029381 - time (sec): 29.33 - samples/sec: 2779.29 - lr: 0.000025 - momentum: 0.000000
|
155 |
+
2023-10-13 23:33:44,152 epoch 6 - iter 594/992 - loss 0.03194290 - time (sec): 35.34 - samples/sec: 2771.66 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-13 23:33:50,524 epoch 6 - iter 693/992 - loss 0.03148955 - time (sec): 41.72 - samples/sec: 2751.98 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-13 23:33:56,555 epoch 6 - iter 792/992 - loss 0.03151560 - time (sec): 47.75 - samples/sec: 2745.14 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-13 23:34:02,346 epoch 6 - iter 891/992 - loss 0.03159422 - time (sec): 53.54 - samples/sec: 2737.07 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-13 23:34:08,209 epoch 6 - iter 990/992 - loss 0.03160206 - time (sec): 59.40 - samples/sec: 2752.33 - lr: 0.000022 - momentum: 0.000000
|
160 |
+
2023-10-13 23:34:08,344 ----------------------------------------------------------------------------------------------------
|
161 |
+
2023-10-13 23:34:08,344 EPOCH 6 done: loss 0.0315 - lr: 0.000022
|
162 |
+
2023-10-13 23:34:11,797 DEV : loss 0.18077921867370605 - f1-score (micro avg) 0.7474
|
163 |
+
2023-10-13 23:34:11,818 saving best model
|
164 |
+
2023-10-13 23:34:12,359 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-13 23:34:18,498 epoch 7 - iter 99/992 - loss 0.02270269 - time (sec): 6.14 - samples/sec: 2795.67 - lr: 0.000022 - momentum: 0.000000
|
166 |
+
2023-10-13 23:34:24,910 epoch 7 - iter 198/992 - loss 0.02677230 - time (sec): 12.55 - samples/sec: 2687.84 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-13 23:34:30,704 epoch 7 - iter 297/992 - loss 0.02627154 - time (sec): 18.34 - samples/sec: 2745.71 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-10-13 23:34:36,691 epoch 7 - iter 396/992 - loss 0.02486597 - time (sec): 24.33 - samples/sec: 2749.78 - lr: 0.000020 - momentum: 0.000000
|
169 |
+
2023-10-13 23:34:42,564 epoch 7 - iter 495/992 - loss 0.02427333 - time (sec): 30.20 - samples/sec: 2755.90 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-13 23:34:48,585 epoch 7 - iter 594/992 - loss 0.02499253 - time (sec): 36.22 - samples/sec: 2771.56 - lr: 0.000019 - momentum: 0.000000
|
171 |
+
2023-10-13 23:34:54,382 epoch 7 - iter 693/992 - loss 0.02475078 - time (sec): 42.02 - samples/sec: 2755.90 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-13 23:35:00,122 epoch 7 - iter 792/992 - loss 0.02346216 - time (sec): 47.76 - samples/sec: 2761.23 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-10-13 23:35:05,982 epoch 7 - iter 891/992 - loss 0.02381140 - time (sec): 53.62 - samples/sec: 2764.08 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-13 23:35:11,552 epoch 7 - iter 990/992 - loss 0.02363118 - time (sec): 59.19 - samples/sec: 2764.57 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-10-13 23:35:11,659 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-13 23:35:11,659 EPOCH 7 done: loss 0.0236 - lr: 0.000017
|
177 |
+
2023-10-13 23:35:15,132 DEV : loss 0.19388847053050995 - f1-score (micro avg) 0.7533
|
178 |
+
2023-10-13 23:35:15,154 saving best model
|
179 |
+
2023-10-13 23:35:15,701 ----------------------------------------------------------------------------------------------------
|
180 |
+
2023-10-13 23:35:21,741 epoch 8 - iter 99/992 - loss 0.02606675 - time (sec): 6.03 - samples/sec: 2751.12 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-10-13 23:35:27,536 epoch 8 - iter 198/992 - loss 0.02087024 - time (sec): 11.82 - samples/sec: 2773.87 - lr: 0.000016 - momentum: 0.000000
|
182 |
+
2023-10-13 23:35:33,595 epoch 8 - iter 297/992 - loss 0.02083409 - time (sec): 17.88 - samples/sec: 2756.05 - lr: 0.000015 - momentum: 0.000000
|
183 |
+
2023-10-13 23:35:39,370 epoch 8 - iter 396/992 - loss 0.01959564 - time (sec): 23.66 - samples/sec: 2759.52 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-10-13 23:35:45,228 epoch 8 - iter 495/992 - loss 0.01772775 - time (sec): 29.51 - samples/sec: 2753.18 - lr: 0.000014 - momentum: 0.000000
|
185 |
+
2023-10-13 23:35:51,290 epoch 8 - iter 594/992 - loss 0.01876618 - time (sec): 35.58 - samples/sec: 2755.48 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-10-13 23:35:57,441 epoch 8 - iter 693/992 - loss 0.01844572 - time (sec): 41.73 - samples/sec: 2754.59 - lr: 0.000013 - momentum: 0.000000
|
187 |
+
2023-10-13 23:36:03,063 epoch 8 - iter 792/992 - loss 0.01837206 - time (sec): 47.35 - samples/sec: 2766.17 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-10-13 23:36:08,882 epoch 8 - iter 891/992 - loss 0.01808332 - time (sec): 53.17 - samples/sec: 2764.84 - lr: 0.000012 - momentum: 0.000000
|
189 |
+
2023-10-13 23:36:14,706 epoch 8 - iter 990/992 - loss 0.01781156 - time (sec): 58.99 - samples/sec: 2774.06 - lr: 0.000011 - momentum: 0.000000
|
190 |
+
2023-10-13 23:36:14,815 ----------------------------------------------------------------------------------------------------
|
191 |
+
2023-10-13 23:36:14,815 EPOCH 8 done: loss 0.0179 - lr: 0.000011
|
192 |
+
2023-10-13 23:36:18,231 DEV : loss 0.2065057009458542 - f1-score (micro avg) 0.7489
|
193 |
+
2023-10-13 23:36:18,252 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-13 23:36:23,837 epoch 9 - iter 99/992 - loss 0.00810002 - time (sec): 5.58 - samples/sec: 2755.74 - lr: 0.000011 - momentum: 0.000000
|
195 |
+
2023-10-13 23:36:29,544 epoch 9 - iter 198/992 - loss 0.01228895 - time (sec): 11.29 - samples/sec: 2762.22 - lr: 0.000010 - momentum: 0.000000
|
196 |
+
2023-10-13 23:36:35,476 epoch 9 - iter 297/992 - loss 0.01142656 - time (sec): 17.22 - samples/sec: 2805.13 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-10-13 23:36:41,470 epoch 9 - iter 396/992 - loss 0.01157152 - time (sec): 23.22 - samples/sec: 2800.36 - lr: 0.000009 - momentum: 0.000000
|
198 |
+
2023-10-13 23:36:48,284 epoch 9 - iter 495/992 - loss 0.01250551 - time (sec): 30.03 - samples/sec: 2754.58 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-10-13 23:36:54,144 epoch 9 - iter 594/992 - loss 0.01181795 - time (sec): 35.89 - samples/sec: 2761.00 - lr: 0.000008 - momentum: 0.000000
|
200 |
+
2023-10-13 23:36:59,911 epoch 9 - iter 693/992 - loss 0.01134550 - time (sec): 41.66 - samples/sec: 2767.20 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-10-13 23:37:05,693 epoch 9 - iter 792/992 - loss 0.01157164 - time (sec): 47.44 - samples/sec: 2773.18 - lr: 0.000007 - momentum: 0.000000
|
202 |
+
2023-10-13 23:37:11,344 epoch 9 - iter 891/992 - loss 0.01261003 - time (sec): 53.09 - samples/sec: 2773.26 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-10-13 23:37:17,361 epoch 9 - iter 990/992 - loss 0.01216585 - time (sec): 59.11 - samples/sec: 2769.37 - lr: 0.000006 - momentum: 0.000000
|
204 |
+
2023-10-13 23:37:17,483 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-13 23:37:17,483 EPOCH 9 done: loss 0.0122 - lr: 0.000006
|
206 |
+
2023-10-13 23:37:20,901 DEV : loss 0.21828265488147736 - f1-score (micro avg) 0.7511
|
207 |
+
2023-10-13 23:37:20,922 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-13 23:37:26,797 epoch 10 - iter 99/992 - loss 0.00487076 - time (sec): 5.87 - samples/sec: 2621.15 - lr: 0.000005 - momentum: 0.000000
|
209 |
+
2023-10-13 23:37:32,458 epoch 10 - iter 198/992 - loss 0.00499497 - time (sec): 11.53 - samples/sec: 2735.44 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-13 23:37:38,187 epoch 10 - iter 297/992 - loss 0.00669737 - time (sec): 17.26 - samples/sec: 2734.38 - lr: 0.000004 - momentum: 0.000000
|
211 |
+
2023-10-13 23:37:44,180 epoch 10 - iter 396/992 - loss 0.00712915 - time (sec): 23.26 - samples/sec: 2726.30 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-13 23:37:49,921 epoch 10 - iter 495/992 - loss 0.00806367 - time (sec): 29.00 - samples/sec: 2749.29 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-10-13 23:37:55,956 epoch 10 - iter 594/992 - loss 0.00780873 - time (sec): 35.03 - samples/sec: 2762.96 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-13 23:38:01,974 epoch 10 - iter 693/992 - loss 0.00776724 - time (sec): 41.05 - samples/sec: 2789.12 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-13 23:38:07,834 epoch 10 - iter 792/992 - loss 0.00771472 - time (sec): 46.91 - samples/sec: 2797.30 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-13 23:38:13,576 epoch 10 - iter 891/992 - loss 0.00813066 - time (sec): 52.65 - samples/sec: 2798.27 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-13 23:38:19,408 epoch 10 - iter 990/992 - loss 0.00863417 - time (sec): 58.48 - samples/sec: 2798.97 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-13 23:38:19,516 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-13 23:38:19,516 EPOCH 10 done: loss 0.0086 - lr: 0.000000
|
220 |
+
2023-10-13 23:38:22,986 DEV : loss 0.2138698697090149 - f1-score (micro avg) 0.7601
|
221 |
+
2023-10-13 23:38:23,006 saving best model
|
222 |
+
2023-10-13 23:38:23,968 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-13 23:38:23,969 Loading model from best epoch ...
|
224 |
+
2023-10-13 23:38:25,336 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
225 |
+
2023-10-13 23:38:28,578
|
226 |
+
Results:
|
227 |
+
- F-score (micro) 0.7934
|
228 |
+
- F-score (macro) 0.7137
|
229 |
+
- Accuracy 0.6822
|
230 |
+
|
231 |
+
By class:
|
232 |
+
precision recall f1-score support
|
233 |
+
|
234 |
+
LOC 0.8217 0.8794 0.8496 655
|
235 |
+
PER 0.7188 0.8251 0.7683 223
|
236 |
+
ORG 0.5636 0.4882 0.5232 127
|
237 |
+
|
238 |
+
micro avg 0.7704 0.8179 0.7934 1005
|
239 |
+
macro avg 0.7014 0.7309 0.7137 1005
|
240 |
+
weighted avg 0.7662 0.8179 0.7903 1005
|
241 |
+
|
242 |
+
2023-10-13 23:38:28,579 ----------------------------------------------------------------------------------------------------
|