Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +242 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91edca03741f5c09ac936e8b3af9426a58e4e92faf6a6d7acef8186b984e0396
|
3 |
+
size 443311111
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 22:33:38 0.0000 0.3735 0.1084 0.7053 0.6606 0.6822 0.5448
|
3 |
+
2 22:34:43 0.0000 0.1015 0.0859 0.6950 0.7964 0.7422 0.6059
|
4 |
+
3 22:35:46 0.0000 0.0737 0.1023 0.7576 0.7602 0.7589 0.6298
|
5 |
+
4 22:36:49 0.0000 0.0510 0.1315 0.7689 0.7489 0.7587 0.6281
|
6 |
+
5 22:37:52 0.0000 0.0421 0.1539 0.7345 0.7794 0.7563 0.6286
|
7 |
+
6 22:38:55 0.0000 0.0296 0.1960 0.7508 0.7636 0.7572 0.6314
|
8 |
+
7 22:39:57 0.0000 0.0217 0.1889 0.7322 0.8009 0.7650 0.6407
|
9 |
+
8 22:41:00 0.0000 0.0159 0.1949 0.7455 0.7885 0.7664 0.6400
|
10 |
+
9 22:42:04 0.0000 0.0110 0.2040 0.7508 0.7839 0.7670 0.6435
|
11 |
+
10 22:43:08 0.0000 0.0075 0.2077 0.7552 0.7851 0.7698 0.6456
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 22:32:35,467 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 22:32:35,468 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 22:32:35,468 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 22:32:35,468 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
53 |
+
2023-10-13 22:32:35,469 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 22:32:35,469 Train: 7936 sentences
|
55 |
+
2023-10-13 22:32:35,469 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 22:32:35,469 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 22:32:35,469 Training Params:
|
58 |
+
2023-10-13 22:32:35,469 - learning_rate: "5e-05"
|
59 |
+
2023-10-13 22:32:35,469 - mini_batch_size: "8"
|
60 |
+
2023-10-13 22:32:35,469 - max_epochs: "10"
|
61 |
+
2023-10-13 22:32:35,469 - shuffle: "True"
|
62 |
+
2023-10-13 22:32:35,469 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 22:32:35,469 Plugins:
|
64 |
+
2023-10-13 22:32:35,469 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 22:32:35,469 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 22:32:35,469 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 22:32:35,469 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 22:32:35,469 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 22:32:35,469 Computation:
|
70 |
+
2023-10-13 22:32:35,469 - compute on device: cuda:0
|
71 |
+
2023-10-13 22:32:35,469 - embedding storage: none
|
72 |
+
2023-10-13 22:32:35,469 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 22:32:35,469 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
|
74 |
+
2023-10-13 22:32:35,469 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 22:32:35,469 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 22:32:42,105 epoch 1 - iter 99/992 - loss 1.97625335 - time (sec): 6.63 - samples/sec: 2619.78 - lr: 0.000005 - momentum: 0.000000
|
77 |
+
2023-10-13 22:32:48,119 epoch 1 - iter 198/992 - loss 1.20445619 - time (sec): 12.65 - samples/sec: 2622.63 - lr: 0.000010 - momentum: 0.000000
|
78 |
+
2023-10-13 22:32:53,990 epoch 1 - iter 297/992 - loss 0.90127542 - time (sec): 18.52 - samples/sec: 2645.29 - lr: 0.000015 - momentum: 0.000000
|
79 |
+
2023-10-13 22:32:59,842 epoch 1 - iter 396/992 - loss 0.73031528 - time (sec): 24.37 - samples/sec: 2664.09 - lr: 0.000020 - momentum: 0.000000
|
80 |
+
2023-10-13 22:33:05,553 epoch 1 - iter 495/992 - loss 0.61732090 - time (sec): 30.08 - samples/sec: 2695.40 - lr: 0.000025 - momentum: 0.000000
|
81 |
+
2023-10-13 22:33:11,400 epoch 1 - iter 594/992 - loss 0.53727279 - time (sec): 35.93 - samples/sec: 2719.61 - lr: 0.000030 - momentum: 0.000000
|
82 |
+
2023-10-13 22:33:17,199 epoch 1 - iter 693/992 - loss 0.48213515 - time (sec): 41.73 - samples/sec: 2724.53 - lr: 0.000035 - momentum: 0.000000
|
83 |
+
2023-10-13 22:33:23,140 epoch 1 - iter 792/992 - loss 0.43768861 - time (sec): 47.67 - samples/sec: 2731.72 - lr: 0.000040 - momentum: 0.000000
|
84 |
+
2023-10-13 22:33:29,370 epoch 1 - iter 891/992 - loss 0.40269124 - time (sec): 53.90 - samples/sec: 2727.47 - lr: 0.000045 - momentum: 0.000000
|
85 |
+
2023-10-13 22:33:35,471 epoch 1 - iter 990/992 - loss 0.37457303 - time (sec): 60.00 - samples/sec: 2724.88 - lr: 0.000050 - momentum: 0.000000
|
86 |
+
2023-10-13 22:33:35,623 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 22:33:35,624 EPOCH 1 done: loss 0.3735 - lr: 0.000050
|
88 |
+
2023-10-13 22:33:38,899 DEV : loss 0.10837739706039429 - f1-score (micro avg) 0.6822
|
89 |
+
2023-10-13 22:33:38,924 saving best model
|
90 |
+
2023-10-13 22:33:39,350 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 22:33:45,003 epoch 2 - iter 99/992 - loss 0.10295012 - time (sec): 5.65 - samples/sec: 2750.21 - lr: 0.000049 - momentum: 0.000000
|
92 |
+
2023-10-13 22:33:50,901 epoch 2 - iter 198/992 - loss 0.10973798 - time (sec): 11.55 - samples/sec: 2718.58 - lr: 0.000049 - momentum: 0.000000
|
93 |
+
2023-10-13 22:33:56,904 epoch 2 - iter 297/992 - loss 0.10543489 - time (sec): 17.55 - samples/sec: 2761.93 - lr: 0.000048 - momentum: 0.000000
|
94 |
+
2023-10-13 22:34:02,862 epoch 2 - iter 396/992 - loss 0.10381763 - time (sec): 23.51 - samples/sec: 2769.50 - lr: 0.000048 - momentum: 0.000000
|
95 |
+
2023-10-13 22:34:08,919 epoch 2 - iter 495/992 - loss 0.10311459 - time (sec): 29.57 - samples/sec: 2751.80 - lr: 0.000047 - momentum: 0.000000
|
96 |
+
2023-10-13 22:34:14,729 epoch 2 - iter 594/992 - loss 0.10171878 - time (sec): 35.38 - samples/sec: 2751.64 - lr: 0.000047 - momentum: 0.000000
|
97 |
+
2023-10-13 22:34:20,492 epoch 2 - iter 693/992 - loss 0.09979812 - time (sec): 41.14 - samples/sec: 2754.11 - lr: 0.000046 - momentum: 0.000000
|
98 |
+
2023-10-13 22:34:26,580 epoch 2 - iter 792/992 - loss 0.10186744 - time (sec): 47.23 - samples/sec: 2753.33 - lr: 0.000046 - momentum: 0.000000
|
99 |
+
2023-10-13 22:34:32,670 epoch 2 - iter 891/992 - loss 0.10186196 - time (sec): 53.32 - samples/sec: 2741.16 - lr: 0.000045 - momentum: 0.000000
|
100 |
+
2023-10-13 22:34:38,791 epoch 2 - iter 990/992 - loss 0.10164595 - time (sec): 59.44 - samples/sec: 2752.43 - lr: 0.000044 - momentum: 0.000000
|
101 |
+
2023-10-13 22:34:38,920 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 22:34:38,920 EPOCH 2 done: loss 0.1015 - lr: 0.000044
|
103 |
+
2023-10-13 22:34:43,263 DEV : loss 0.08593912422657013 - f1-score (micro avg) 0.7422
|
104 |
+
2023-10-13 22:34:43,287 saving best model
|
105 |
+
2023-10-13 22:34:43,770 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 22:34:49,664 epoch 3 - iter 99/992 - loss 0.08176039 - time (sec): 5.89 - samples/sec: 2717.35 - lr: 0.000044 - momentum: 0.000000
|
107 |
+
2023-10-13 22:34:55,620 epoch 3 - iter 198/992 - loss 0.07620139 - time (sec): 11.85 - samples/sec: 2720.74 - lr: 0.000043 - momentum: 0.000000
|
108 |
+
2023-10-13 22:35:01,359 epoch 3 - iter 297/992 - loss 0.07242783 - time (sec): 17.59 - samples/sec: 2743.33 - lr: 0.000043 - momentum: 0.000000
|
109 |
+
2023-10-13 22:35:07,179 epoch 3 - iter 396/992 - loss 0.07362963 - time (sec): 23.41 - samples/sec: 2759.74 - lr: 0.000042 - momentum: 0.000000
|
110 |
+
2023-10-13 22:35:13,060 epoch 3 - iter 495/992 - loss 0.07299823 - time (sec): 29.29 - samples/sec: 2761.91 - lr: 0.000042 - momentum: 0.000000
|
111 |
+
2023-10-13 22:35:19,048 epoch 3 - iter 594/992 - loss 0.07330654 - time (sec): 35.27 - samples/sec: 2761.44 - lr: 0.000041 - momentum: 0.000000
|
112 |
+
2023-10-13 22:35:25,090 epoch 3 - iter 693/992 - loss 0.07489880 - time (sec): 41.32 - samples/sec: 2747.94 - lr: 0.000041 - momentum: 0.000000
|
113 |
+
2023-10-13 22:35:31,036 epoch 3 - iter 792/992 - loss 0.07562313 - time (sec): 47.26 - samples/sec: 2760.10 - lr: 0.000040 - momentum: 0.000000
|
114 |
+
2023-10-13 22:35:37,046 epoch 3 - iter 891/992 - loss 0.07372307 - time (sec): 53.27 - samples/sec: 2766.49 - lr: 0.000039 - momentum: 0.000000
|
115 |
+
2023-10-13 22:35:42,895 epoch 3 - iter 990/992 - loss 0.07373060 - time (sec): 59.12 - samples/sec: 2769.61 - lr: 0.000039 - momentum: 0.000000
|
116 |
+
2023-10-13 22:35:42,996 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 22:35:42,996 EPOCH 3 done: loss 0.0737 - lr: 0.000039
|
118 |
+
2023-10-13 22:35:46,388 DEV : loss 0.10231217741966248 - f1-score (micro avg) 0.7589
|
119 |
+
2023-10-13 22:35:46,412 saving best model
|
120 |
+
2023-10-13 22:35:46,925 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 22:35:52,809 epoch 4 - iter 99/992 - loss 0.05134981 - time (sec): 5.88 - samples/sec: 2723.80 - lr: 0.000038 - momentum: 0.000000
|
122 |
+
2023-10-13 22:35:59,141 epoch 4 - iter 198/992 - loss 0.05017639 - time (sec): 12.21 - samples/sec: 2716.64 - lr: 0.000038 - momentum: 0.000000
|
123 |
+
2023-10-13 22:36:05,090 epoch 4 - iter 297/992 - loss 0.04727321 - time (sec): 18.16 - samples/sec: 2718.31 - lr: 0.000037 - momentum: 0.000000
|
124 |
+
2023-10-13 22:36:10,869 epoch 4 - iter 396/992 - loss 0.04808307 - time (sec): 23.94 - samples/sec: 2749.13 - lr: 0.000037 - momentum: 0.000000
|
125 |
+
2023-10-13 22:36:16,706 epoch 4 - iter 495/992 - loss 0.04713806 - time (sec): 29.78 - samples/sec: 2768.47 - lr: 0.000036 - momentum: 0.000000
|
126 |
+
2023-10-13 22:36:22,555 epoch 4 - iter 594/992 - loss 0.04822839 - time (sec): 35.63 - samples/sec: 2769.58 - lr: 0.000036 - momentum: 0.000000
|
127 |
+
2023-10-13 22:36:28,395 epoch 4 - iter 693/992 - loss 0.04982517 - time (sec): 41.47 - samples/sec: 2764.17 - lr: 0.000035 - momentum: 0.000000
|
128 |
+
2023-10-13 22:36:34,340 epoch 4 - iter 792/992 - loss 0.05129636 - time (sec): 47.41 - samples/sec: 2765.07 - lr: 0.000034 - momentum: 0.000000
|
129 |
+
2023-10-13 22:36:39,871 epoch 4 - iter 891/992 - loss 0.05132015 - time (sec): 52.94 - samples/sec: 2782.54 - lr: 0.000034 - momentum: 0.000000
|
130 |
+
2023-10-13 22:36:46,060 epoch 4 - iter 990/992 - loss 0.05099074 - time (sec): 59.13 - samples/sec: 2765.99 - lr: 0.000033 - momentum: 0.000000
|
131 |
+
2023-10-13 22:36:46,190 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 22:36:46,190 EPOCH 4 done: loss 0.0510 - lr: 0.000033
|
133 |
+
2023-10-13 22:36:49,798 DEV : loss 0.13146057724952698 - f1-score (micro avg) 0.7587
|
134 |
+
2023-10-13 22:36:49,822 ----------------------------------------------------------------------------------------------------
|
135 |
+
2023-10-13 22:36:55,595 epoch 5 - iter 99/992 - loss 0.03914982 - time (sec): 5.77 - samples/sec: 2761.13 - lr: 0.000033 - momentum: 0.000000
|
136 |
+
2023-10-13 22:37:01,451 epoch 5 - iter 198/992 - loss 0.03993438 - time (sec): 11.63 - samples/sec: 2786.06 - lr: 0.000032 - momentum: 0.000000
|
137 |
+
2023-10-13 22:37:07,215 epoch 5 - iter 297/992 - loss 0.03848388 - time (sec): 17.39 - samples/sec: 2811.92 - lr: 0.000032 - momentum: 0.000000
|
138 |
+
2023-10-13 22:37:13,113 epoch 5 - iter 396/992 - loss 0.03928207 - time (sec): 23.29 - samples/sec: 2821.97 - lr: 0.000031 - momentum: 0.000000
|
139 |
+
2023-10-13 22:37:19,287 epoch 5 - iter 495/992 - loss 0.04014864 - time (sec): 29.46 - samples/sec: 2803.85 - lr: 0.000031 - momentum: 0.000000
|
140 |
+
2023-10-13 22:37:25,177 epoch 5 - iter 594/992 - loss 0.04251426 - time (sec): 35.35 - samples/sec: 2787.71 - lr: 0.000030 - momentum: 0.000000
|
141 |
+
2023-10-13 22:37:30,988 epoch 5 - iter 693/992 - loss 0.04162004 - time (sec): 41.17 - samples/sec: 2781.73 - lr: 0.000029 - momentum: 0.000000
|
142 |
+
2023-10-13 22:37:36,743 epoch 5 - iter 792/992 - loss 0.04073969 - time (sec): 46.92 - samples/sec: 2780.60 - lr: 0.000029 - momentum: 0.000000
|
143 |
+
2023-10-13 22:37:43,244 epoch 5 - iter 891/992 - loss 0.04252912 - time (sec): 53.42 - samples/sec: 2758.70 - lr: 0.000028 - momentum: 0.000000
|
144 |
+
2023-10-13 22:37:48,877 epoch 5 - iter 990/992 - loss 0.04211590 - time (sec): 59.05 - samples/sec: 2768.82 - lr: 0.000028 - momentum: 0.000000
|
145 |
+
2023-10-13 22:37:49,038 ----------------------------------------------------------------------------------------------------
|
146 |
+
2023-10-13 22:37:49,038 EPOCH 5 done: loss 0.0421 - lr: 0.000028
|
147 |
+
2023-10-13 22:37:52,595 DEV : loss 0.15390822291374207 - f1-score (micro avg) 0.7563
|
148 |
+
2023-10-13 22:37:52,618 ----------------------------------------------------------------------------------------------------
|
149 |
+
2023-10-13 22:37:58,397 epoch 6 - iter 99/992 - loss 0.02447859 - time (sec): 5.78 - samples/sec: 2857.09 - lr: 0.000027 - momentum: 0.000000
|
150 |
+
2023-10-13 22:38:04,483 epoch 6 - iter 198/992 - loss 0.02281979 - time (sec): 11.86 - samples/sec: 2814.99 - lr: 0.000027 - momentum: 0.000000
|
151 |
+
2023-10-13 22:38:10,375 epoch 6 - iter 297/992 - loss 0.02449871 - time (sec): 17.76 - samples/sec: 2836.72 - lr: 0.000026 - momentum: 0.000000
|
152 |
+
2023-10-13 22:38:16,330 epoch 6 - iter 396/992 - loss 0.02562274 - time (sec): 23.71 - samples/sec: 2816.53 - lr: 0.000026 - momentum: 0.000000
|
153 |
+
2023-10-13 22:38:22,242 epoch 6 - iter 495/992 - loss 0.02613520 - time (sec): 29.62 - samples/sec: 2780.83 - lr: 0.000025 - momentum: 0.000000
|
154 |
+
2023-10-13 22:38:28,192 epoch 6 - iter 594/992 - loss 0.02619509 - time (sec): 35.57 - samples/sec: 2768.90 - lr: 0.000024 - momentum: 0.000000
|
155 |
+
2023-10-13 22:38:33,861 epoch 6 - iter 693/992 - loss 0.02665766 - time (sec): 41.24 - samples/sec: 2754.02 - lr: 0.000024 - momentum: 0.000000
|
156 |
+
2023-10-13 22:38:39,952 epoch 6 - iter 792/992 - loss 0.02787193 - time (sec): 47.33 - samples/sec: 2770.66 - lr: 0.000023 - momentum: 0.000000
|
157 |
+
2023-10-13 22:38:45,783 epoch 6 - iter 891/992 - loss 0.02982103 - time (sec): 53.16 - samples/sec: 2766.54 - lr: 0.000023 - momentum: 0.000000
|
158 |
+
2023-10-13 22:38:51,599 epoch 6 - iter 990/992 - loss 0.02967950 - time (sec): 58.98 - samples/sec: 2772.64 - lr: 0.000022 - momentum: 0.000000
|
159 |
+
2023-10-13 22:38:51,724 ----------------------------------------------------------------------------------------------------
|
160 |
+
2023-10-13 22:38:51,724 EPOCH 6 done: loss 0.0296 - lr: 0.000022
|
161 |
+
2023-10-13 22:38:55,149 DEV : loss 0.19599080085754395 - f1-score (micro avg) 0.7572
|
162 |
+
2023-10-13 22:38:55,170 ----------------------------------------------------------------------------------------------------
|
163 |
+
2023-10-13 22:39:00,912 epoch 7 - iter 99/992 - loss 0.02376152 - time (sec): 5.74 - samples/sec: 2826.61 - lr: 0.000022 - momentum: 0.000000
|
164 |
+
2023-10-13 22:39:06,655 epoch 7 - iter 198/992 - loss 0.01958953 - time (sec): 11.48 - samples/sec: 2810.22 - lr: 0.000021 - momentum: 0.000000
|
165 |
+
2023-10-13 22:39:12,687 epoch 7 - iter 297/992 - loss 0.01962767 - time (sec): 17.52 - samples/sec: 2831.96 - lr: 0.000021 - momentum: 0.000000
|
166 |
+
2023-10-13 22:39:18,688 epoch 7 - iter 396/992 - loss 0.01948507 - time (sec): 23.52 - samples/sec: 2822.98 - lr: 0.000020 - momentum: 0.000000
|
167 |
+
2023-10-13 22:39:24,654 epoch 7 - iter 495/992 - loss 0.01985791 - time (sec): 29.48 - samples/sec: 2810.77 - lr: 0.000019 - momentum: 0.000000
|
168 |
+
2023-10-13 22:39:30,455 epoch 7 - iter 594/992 - loss 0.02068738 - time (sec): 35.28 - samples/sec: 2793.89 - lr: 0.000019 - momentum: 0.000000
|
169 |
+
2023-10-13 22:39:36,232 epoch 7 - iter 693/992 - loss 0.02241871 - time (sec): 41.06 - samples/sec: 2796.58 - lr: 0.000018 - momentum: 0.000000
|
170 |
+
2023-10-13 22:39:41,978 epoch 7 - iter 792/992 - loss 0.02181208 - time (sec): 46.81 - samples/sec: 2804.38 - lr: 0.000018 - momentum: 0.000000
|
171 |
+
2023-10-13 22:39:47,996 epoch 7 - iter 891/992 - loss 0.02217841 - time (sec): 52.83 - samples/sec: 2783.90 - lr: 0.000017 - momentum: 0.000000
|
172 |
+
2023-10-13 22:39:54,016 epoch 7 - iter 990/992 - loss 0.02172978 - time (sec): 58.84 - samples/sec: 2783.19 - lr: 0.000017 - momentum: 0.000000
|
173 |
+
2023-10-13 22:39:54,115 ----------------------------------------------------------------------------------------------------
|
174 |
+
2023-10-13 22:39:54,115 EPOCH 7 done: loss 0.0217 - lr: 0.000017
|
175 |
+
2023-10-13 22:39:57,955 DEV : loss 0.18885478377342224 - f1-score (micro avg) 0.765
|
176 |
+
2023-10-13 22:39:57,976 saving best model
|
177 |
+
2023-10-13 22:39:58,428 ----------------------------------------------------------------------------------------------------
|
178 |
+
2023-10-13 22:40:04,318 epoch 8 - iter 99/992 - loss 0.02286923 - time (sec): 5.88 - samples/sec: 2805.77 - lr: 0.000016 - momentum: 0.000000
|
179 |
+
2023-10-13 22:40:10,386 epoch 8 - iter 198/992 - loss 0.01729121 - time (sec): 11.95 - samples/sec: 2800.86 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-10-13 22:40:16,196 epoch 8 - iter 297/992 - loss 0.01585346 - time (sec): 17.76 - samples/sec: 2818.05 - lr: 0.000015 - momentum: 0.000000
|
181 |
+
2023-10-13 22:40:22,131 epoch 8 - iter 396/992 - loss 0.01479878 - time (sec): 23.70 - samples/sec: 2838.92 - lr: 0.000014 - momentum: 0.000000
|
182 |
+
2023-10-13 22:40:27,927 epoch 8 - iter 495/992 - loss 0.01559774 - time (sec): 29.49 - samples/sec: 2832.36 - lr: 0.000014 - momentum: 0.000000
|
183 |
+
2023-10-13 22:40:33,638 epoch 8 - iter 594/992 - loss 0.01479709 - time (sec): 35.20 - samples/sec: 2821.11 - lr: 0.000013 - momentum: 0.000000
|
184 |
+
2023-10-13 22:40:39,365 epoch 8 - iter 693/992 - loss 0.01447454 - time (sec): 40.93 - samples/sec: 2808.13 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-10-13 22:40:45,325 epoch 8 - iter 792/992 - loss 0.01516714 - time (sec): 46.89 - samples/sec: 2803.50 - lr: 0.000012 - momentum: 0.000000
|
186 |
+
2023-10-13 22:40:51,152 epoch 8 - iter 891/992 - loss 0.01551720 - time (sec): 52.72 - samples/sec: 2801.05 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-10-13 22:40:56,972 epoch 8 - iter 990/992 - loss 0.01557435 - time (sec): 58.54 - samples/sec: 2798.83 - lr: 0.000011 - momentum: 0.000000
|
188 |
+
2023-10-13 22:40:57,071 ----------------------------------------------------------------------------------------------------
|
189 |
+
2023-10-13 22:40:57,072 EPOCH 8 done: loss 0.0159 - lr: 0.000011
|
190 |
+
2023-10-13 22:41:00,599 DEV : loss 0.19485069811344147 - f1-score (micro avg) 0.7664
|
191 |
+
2023-10-13 22:41:00,622 saving best model
|
192 |
+
2023-10-13 22:41:01,122 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-13 22:41:06,817 epoch 9 - iter 99/992 - loss 0.00725184 - time (sec): 5.69 - samples/sec: 2598.12 - lr: 0.000011 - momentum: 0.000000
|
194 |
+
2023-10-13 22:41:12,615 epoch 9 - iter 198/992 - loss 0.01324789 - time (sec): 11.49 - samples/sec: 2671.94 - lr: 0.000010 - momentum: 0.000000
|
195 |
+
2023-10-13 22:41:18,618 epoch 9 - iter 297/992 - loss 0.01262387 - time (sec): 17.49 - samples/sec: 2676.85 - lr: 0.000009 - momentum: 0.000000
|
196 |
+
2023-10-13 22:41:24,527 epoch 9 - iter 396/992 - loss 0.01078576 - time (sec): 23.40 - samples/sec: 2700.15 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-10-13 22:41:30,687 epoch 9 - iter 495/992 - loss 0.01086785 - time (sec): 29.56 - samples/sec: 2708.13 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-10-13 22:41:36,631 epoch 9 - iter 594/992 - loss 0.01119434 - time (sec): 35.50 - samples/sec: 2722.13 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-10-13 22:41:42,383 epoch 9 - iter 693/992 - loss 0.01095970 - time (sec): 41.26 - samples/sec: 2736.96 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-10-13 22:41:48,299 epoch 9 - iter 792/992 - loss 0.01070482 - time (sec): 47.17 - samples/sec: 2753.00 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-10-13 22:41:54,240 epoch 9 - iter 891/992 - loss 0.01101838 - time (sec): 53.11 - samples/sec: 2759.58 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-10-13 22:42:00,495 epoch 9 - iter 990/992 - loss 0.01099219 - time (sec): 59.37 - samples/sec: 2755.51 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-10-13 22:42:00,600 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-13 22:42:00,600 EPOCH 9 done: loss 0.0110 - lr: 0.000006
|
205 |
+
2023-10-13 22:42:04,597 DEV : loss 0.20399770140647888 - f1-score (micro avg) 0.767
|
206 |
+
2023-10-13 22:42:04,619 saving best model
|
207 |
+
2023-10-13 22:42:05,118 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-13 22:42:11,036 epoch 10 - iter 99/992 - loss 0.00694056 - time (sec): 5.92 - samples/sec: 2777.84 - lr: 0.000005 - momentum: 0.000000
|
209 |
+
2023-10-13 22:42:17,345 epoch 10 - iter 198/992 - loss 0.00836868 - time (sec): 12.23 - samples/sec: 2802.73 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-13 22:42:22,986 epoch 10 - iter 297/992 - loss 0.00886989 - time (sec): 17.87 - samples/sec: 2785.15 - lr: 0.000004 - momentum: 0.000000
|
211 |
+
2023-10-13 22:42:28,741 epoch 10 - iter 396/992 - loss 0.00862895 - time (sec): 23.62 - samples/sec: 2804.19 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-13 22:42:35,030 epoch 10 - iter 495/992 - loss 0.00902308 - time (sec): 29.91 - samples/sec: 2785.89 - lr: 0.000003 - momentum: 0.000000
|
213 |
+
2023-10-13 22:42:40,907 epoch 10 - iter 594/992 - loss 0.00870118 - time (sec): 35.79 - samples/sec: 2776.25 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-13 22:42:46,703 epoch 10 - iter 693/992 - loss 0.00845402 - time (sec): 41.58 - samples/sec: 2756.78 - lr: 0.000002 - momentum: 0.000000
|
215 |
+
2023-10-13 22:42:52,747 epoch 10 - iter 792/992 - loss 0.00817124 - time (sec): 47.63 - samples/sec: 2751.49 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-13 22:42:58,806 epoch 10 - iter 891/992 - loss 0.00784789 - time (sec): 53.69 - samples/sec: 2751.57 - lr: 0.000001 - momentum: 0.000000
|
217 |
+
2023-10-13 22:43:04,469 epoch 10 - iter 990/992 - loss 0.00753226 - time (sec): 59.35 - samples/sec: 2757.97 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-13 22:43:04,580 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-13 22:43:04,580 EPOCH 10 done: loss 0.0075 - lr: 0.000000
|
220 |
+
2023-10-13 22:43:07,991 DEV : loss 0.20772945880889893 - f1-score (micro avg) 0.7698
|
221 |
+
2023-10-13 22:43:08,013 saving best model
|
222 |
+
2023-10-13 22:43:08,849 ----------------------------------------------------------------------------------------------------
|
223 |
+
2023-10-13 22:43:08,850 Loading model from best epoch ...
|
224 |
+
2023-10-13 22:43:10,240 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
225 |
+
2023-10-13 22:43:13,645
|
226 |
+
Results:
|
227 |
+
- F-score (micro) 0.7805
|
228 |
+
- F-score (macro) 0.6917
|
229 |
+
- Accuracy 0.6599
|
230 |
+
|
231 |
+
By class:
|
232 |
+
precision recall f1-score support
|
233 |
+
|
234 |
+
LOC 0.8191 0.8641 0.8410 655
|
235 |
+
PER 0.7171 0.8296 0.7692 223
|
236 |
+
ORG 0.4912 0.4409 0.4647 127
|
237 |
+
|
238 |
+
micro avg 0.7592 0.8030 0.7805 1005
|
239 |
+
macro avg 0.6758 0.7116 0.6917 1005
|
240 |
+
weighted avg 0.7550 0.8030 0.7775 1005
|
241 |
+
|
242 |
+
2023-10-13 22:43:13,646 ----------------------------------------------------------------------------------------------------
|