Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +240 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fcdf4667b9c6d79d131e40d2b3c8566faed108df2efcee65eda03b8aa12a533b
|
3 |
+
size 443311111
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 22:22:33 0.0000 0.4368 0.0990 0.6863 0.7127 0.6992 0.5536
|
3 |
+
2 22:23:36 0.0000 0.1012 0.0944 0.7114 0.7862 0.7469 0.6123
|
4 |
+
3 22:24:40 0.0000 0.0697 0.1071 0.7128 0.7862 0.7477 0.6150
|
5 |
+
4 22:25:43 0.0000 0.0491 0.1333 0.7327 0.7658 0.7489 0.6160
|
6 |
+
5 22:26:46 0.0000 0.0386 0.1475 0.7371 0.8054 0.7697 0.6438
|
7 |
+
6 22:27:48 0.0000 0.0294 0.1888 0.7141 0.7771 0.7443 0.6123
|
8 |
+
7 22:28:51 0.0000 0.0221 0.1875 0.7405 0.7907 0.7648 0.6366
|
9 |
+
8 22:29:54 0.0000 0.0160 0.1971 0.7327 0.7907 0.7606 0.6297
|
10 |
+
9 22:30:57 0.0000 0.0116 0.2116 0.7465 0.7828 0.7642 0.6349
|
11 |
+
10 22:31:59 0.0000 0.0089 0.2155 0.7442 0.7964 0.7694 0.6423
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 22:21:32,062 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 22:21:32,063 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=13, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 22:21:32,063 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 22:21:32,063 MultiCorpus: 7936 train + 992 dev + 992 test sentences
|
52 |
+
- NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr
|
53 |
+
2023-10-13 22:21:32,063 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 22:21:32,063 Train: 7936 sentences
|
55 |
+
2023-10-13 22:21:32,063 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 22:21:32,063 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 22:21:32,064 Training Params:
|
58 |
+
2023-10-13 22:21:32,064 - learning_rate: "3e-05"
|
59 |
+
2023-10-13 22:21:32,064 - mini_batch_size: "8"
|
60 |
+
2023-10-13 22:21:32,064 - max_epochs: "10"
|
61 |
+
2023-10-13 22:21:32,064 - shuffle: "True"
|
62 |
+
2023-10-13 22:21:32,064 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 22:21:32,064 Plugins:
|
64 |
+
2023-10-13 22:21:32,064 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 22:21:32,064 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 22:21:32,064 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 22:21:32,064 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 22:21:32,064 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 22:21:32,064 Computation:
|
70 |
+
2023-10-13 22:21:32,064 - compute on device: cuda:0
|
71 |
+
2023-10-13 22:21:32,064 - embedding storage: none
|
72 |
+
2023-10-13 22:21:32,064 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 22:21:32,064 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-2"
|
74 |
+
2023-10-13 22:21:32,064 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 22:21:32,064 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 22:21:38,226 epoch 1 - iter 99/992 - loss 2.33299355 - time (sec): 6.16 - samples/sec: 2821.27 - lr: 0.000003 - momentum: 0.000000
|
77 |
+
2023-10-13 22:21:43,899 epoch 1 - iter 198/992 - loss 1.45654399 - time (sec): 11.83 - samples/sec: 2803.24 - lr: 0.000006 - momentum: 0.000000
|
78 |
+
2023-10-13 22:21:49,704 epoch 1 - iter 297/992 - loss 1.08734806 - time (sec): 17.64 - samples/sec: 2777.39 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2023-10-13 22:21:55,475 epoch 1 - iter 396/992 - loss 0.87857029 - time (sec): 23.41 - samples/sec: 2773.46 - lr: 0.000012 - momentum: 0.000000
|
80 |
+
2023-10-13 22:22:01,199 epoch 1 - iter 495/992 - loss 0.74066449 - time (sec): 29.13 - samples/sec: 2783.19 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-13 22:22:07,235 epoch 1 - iter 594/992 - loss 0.64158469 - time (sec): 35.17 - samples/sec: 2778.31 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-10-13 22:22:12,920 epoch 1 - iter 693/992 - loss 0.57302135 - time (sec): 40.86 - samples/sec: 2782.79 - lr: 0.000021 - momentum: 0.000000
|
83 |
+
2023-10-13 22:22:18,655 epoch 1 - iter 792/992 - loss 0.51792287 - time (sec): 46.59 - samples/sec: 2794.99 - lr: 0.000024 - momentum: 0.000000
|
84 |
+
2023-10-13 22:22:24,750 epoch 1 - iter 891/992 - loss 0.47364366 - time (sec): 52.68 - samples/sec: 2790.38 - lr: 0.000027 - momentum: 0.000000
|
85 |
+
2023-10-13 22:22:30,602 epoch 1 - iter 990/992 - loss 0.43807375 - time (sec): 58.54 - samples/sec: 2793.01 - lr: 0.000030 - momentum: 0.000000
|
86 |
+
2023-10-13 22:22:30,750 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 22:22:30,750 EPOCH 1 done: loss 0.4368 - lr: 0.000030
|
88 |
+
2023-10-13 22:22:33,919 DEV : loss 0.09895769506692886 - f1-score (micro avg) 0.6992
|
89 |
+
2023-10-13 22:22:33,940 saving best model
|
90 |
+
2023-10-13 22:22:34,356 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 22:22:40,079 epoch 2 - iter 99/992 - loss 0.10440393 - time (sec): 5.72 - samples/sec: 2716.33 - lr: 0.000030 - momentum: 0.000000
|
92 |
+
2023-10-13 22:22:45,944 epoch 2 - iter 198/992 - loss 0.10904220 - time (sec): 11.59 - samples/sec: 2709.89 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-13 22:22:52,058 epoch 2 - iter 297/992 - loss 0.10445266 - time (sec): 17.70 - samples/sec: 2738.80 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-10-13 22:22:57,812 epoch 2 - iter 396/992 - loss 0.10543564 - time (sec): 23.45 - samples/sec: 2776.19 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-13 22:23:03,822 epoch 2 - iter 495/992 - loss 0.10401639 - time (sec): 29.46 - samples/sec: 2761.40 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-13 22:23:09,512 epoch 2 - iter 594/992 - loss 0.10324383 - time (sec): 35.16 - samples/sec: 2769.06 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-10-13 22:23:15,203 epoch 2 - iter 693/992 - loss 0.10117912 - time (sec): 40.85 - samples/sec: 2773.98 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-13 22:23:21,294 epoch 2 - iter 792/992 - loss 0.10187508 - time (sec): 46.94 - samples/sec: 2770.45 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-13 22:23:27,242 epoch 2 - iter 891/992 - loss 0.10186016 - time (sec): 52.89 - samples/sec: 2763.64 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-10-13 22:23:33,244 epoch 2 - iter 990/992 - loss 0.10129833 - time (sec): 58.89 - samples/sec: 2778.25 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-13 22:23:33,369 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 22:23:33,370 EPOCH 2 done: loss 0.1012 - lr: 0.000027
|
103 |
+
2023-10-13 22:23:36,856 DEV : loss 0.09443922340869904 - f1-score (micro avg) 0.7469
|
104 |
+
2023-10-13 22:23:36,889 saving best model
|
105 |
+
2023-10-13 22:23:37,421 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 22:23:44,041 epoch 3 - iter 99/992 - loss 0.07835091 - time (sec): 6.62 - samples/sec: 2418.55 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-13 22:23:49,988 epoch 3 - iter 198/992 - loss 0.07452825 - time (sec): 12.57 - samples/sec: 2565.06 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-10-13 22:23:55,653 epoch 3 - iter 297/992 - loss 0.06912775 - time (sec): 18.23 - samples/sec: 2646.29 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-13 22:24:01,450 epoch 3 - iter 396/992 - loss 0.07019004 - time (sec): 24.03 - samples/sec: 2688.30 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-13 22:24:07,403 epoch 3 - iter 495/992 - loss 0.06908856 - time (sec): 29.98 - samples/sec: 2698.01 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-10-13 22:24:13,363 epoch 3 - iter 594/992 - loss 0.06956091 - time (sec): 35.94 - samples/sec: 2710.32 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-13 22:24:19,337 epoch 3 - iter 693/992 - loss 0.07164602 - time (sec): 41.91 - samples/sec: 2708.74 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-13 22:24:25,264 epoch 3 - iter 792/992 - loss 0.07204638 - time (sec): 47.84 - samples/sec: 2726.73 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-10-13 22:24:31,199 epoch 3 - iter 891/992 - loss 0.07025467 - time (sec): 53.78 - samples/sec: 2740.60 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-13 22:24:37,045 epoch 3 - iter 990/992 - loss 0.06972650 - time (sec): 59.62 - samples/sec: 2746.36 - lr: 0.000023 - momentum: 0.000000
|
116 |
+
2023-10-13 22:24:37,147 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 22:24:37,147 EPOCH 3 done: loss 0.0697 - lr: 0.000023
|
118 |
+
2023-10-13 22:24:40,552 DEV : loss 0.10710007697343826 - f1-score (micro avg) 0.7477
|
119 |
+
2023-10-13 22:24:40,575 saving best model
|
120 |
+
2023-10-13 22:24:41,077 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 22:24:46,925 epoch 4 - iter 99/992 - loss 0.04664656 - time (sec): 5.84 - samples/sec: 2741.14 - lr: 0.000023 - momentum: 0.000000
|
122 |
+
2023-10-13 22:24:53,063 epoch 4 - iter 198/992 - loss 0.04715979 - time (sec): 11.98 - samples/sec: 2768.98 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-10-13 22:24:59,015 epoch 4 - iter 297/992 - loss 0.04504200 - time (sec): 17.93 - samples/sec: 2753.00 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-13 22:25:04,781 epoch 4 - iter 396/992 - loss 0.04552468 - time (sec): 23.70 - samples/sec: 2777.07 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-10-13 22:25:10,615 epoch 4 - iter 495/992 - loss 0.04550867 - time (sec): 29.53 - samples/sec: 2791.41 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-13 22:25:16,451 epoch 4 - iter 594/992 - loss 0.04745191 - time (sec): 35.37 - samples/sec: 2789.76 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-13 22:25:22,220 epoch 4 - iter 693/992 - loss 0.04806225 - time (sec): 41.14 - samples/sec: 2786.19 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-10-13 22:25:28,218 epoch 4 - iter 792/992 - loss 0.04807101 - time (sec): 47.14 - samples/sec: 2781.22 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-13 22:25:33,783 epoch 4 - iter 891/992 - loss 0.04884662 - time (sec): 52.70 - samples/sec: 2795.26 - lr: 0.000020 - momentum: 0.000000
|
130 |
+
2023-10-13 22:25:39,847 epoch 4 - iter 990/992 - loss 0.04904023 - time (sec): 58.77 - samples/sec: 2783.19 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-10-13 22:25:39,971 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 22:25:39,972 EPOCH 4 done: loss 0.0491 - lr: 0.000020
|
133 |
+
2023-10-13 22:25:43,378 DEV : loss 0.1333416849374771 - f1-score (micro avg) 0.7489
|
134 |
+
2023-10-13 22:25:43,398 saving best model
|
135 |
+
2023-10-13 22:25:44,266 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-10-13 22:25:50,041 epoch 5 - iter 99/992 - loss 0.03508164 - time (sec): 5.77 - samples/sec: 2761.94 - lr: 0.000020 - momentum: 0.000000
|
137 |
+
2023-10-13 22:25:55,794 epoch 5 - iter 198/992 - loss 0.03490154 - time (sec): 11.52 - samples/sec: 2811.59 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-13 22:26:01,520 epoch 5 - iter 297/992 - loss 0.03554118 - time (sec): 17.25 - samples/sec: 2835.25 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-10-13 22:26:07,492 epoch 5 - iter 396/992 - loss 0.03723271 - time (sec): 23.22 - samples/sec: 2830.39 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-13 22:26:13,620 epoch 5 - iter 495/992 - loss 0.03770116 - time (sec): 29.35 - samples/sec: 2814.86 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-13 22:26:19,504 epoch 5 - iter 594/992 - loss 0.03766517 - time (sec): 35.23 - samples/sec: 2797.30 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-10-13 22:26:25,285 epoch 5 - iter 693/992 - loss 0.03805744 - time (sec): 41.01 - samples/sec: 2792.03 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-13 22:26:31,050 epoch 5 - iter 792/992 - loss 0.03684000 - time (sec): 46.78 - samples/sec: 2788.99 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-13 22:26:37,088 epoch 5 - iter 891/992 - loss 0.03834438 - time (sec): 52.82 - samples/sec: 2790.28 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-10-13 22:26:42,739 epoch 5 - iter 990/992 - loss 0.03863747 - time (sec): 58.47 - samples/sec: 2796.55 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-13 22:26:42,895 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-13 22:26:42,895 EPOCH 5 done: loss 0.0386 - lr: 0.000017
|
148 |
+
2023-10-13 22:26:46,395 DEV : loss 0.1474953144788742 - f1-score (micro avg) 0.7697
|
149 |
+
2023-10-13 22:26:46,416 saving best model
|
150 |
+
2023-10-13 22:26:46,900 ----------------------------------------------------------------------------------------------------
|
151 |
+
2023-10-13 22:26:52,655 epoch 6 - iter 99/992 - loss 0.03066144 - time (sec): 5.75 - samples/sec: 2870.08 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-10-13 22:26:58,650 epoch 6 - iter 198/992 - loss 0.02576809 - time (sec): 11.75 - samples/sec: 2842.92 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-10-13 22:27:04,479 epoch 6 - iter 297/992 - loss 0.02640387 - time (sec): 17.58 - samples/sec: 2865.75 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-13 22:27:10,420 epoch 6 - iter 396/992 - loss 0.02662851 - time (sec): 23.52 - samples/sec: 2839.78 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-10-13 22:27:16,188 epoch 6 - iter 495/992 - loss 0.02679061 - time (sec): 29.28 - samples/sec: 2812.92 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-10-13 22:27:22,018 epoch 6 - iter 594/992 - loss 0.02779911 - time (sec): 35.12 - samples/sec: 2804.97 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-13 22:27:27,615 epoch 6 - iter 693/992 - loss 0.02793110 - time (sec): 40.71 - samples/sec: 2789.84 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-10-13 22:27:33,725 epoch 6 - iter 792/992 - loss 0.02849861 - time (sec): 46.82 - samples/sec: 2800.86 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-10-13 22:27:39,500 epoch 6 - iter 891/992 - loss 0.03003150 - time (sec): 52.60 - samples/sec: 2796.36 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-13 22:27:45,315 epoch 6 - iter 990/992 - loss 0.02931730 - time (sec): 58.41 - samples/sec: 2799.63 - lr: 0.000013 - momentum: 0.000000
|
161 |
+
2023-10-13 22:27:45,439 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-13 22:27:45,439 EPOCH 6 done: loss 0.0294 - lr: 0.000013
|
163 |
+
2023-10-13 22:27:48,830 DEV : loss 0.18882010877132416 - f1-score (micro avg) 0.7443
|
164 |
+
2023-10-13 22:27:48,850 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-13 22:27:54,585 epoch 7 - iter 99/992 - loss 0.01843936 - time (sec): 5.73 - samples/sec: 2830.51 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-10-13 22:28:00,478 epoch 7 - iter 198/992 - loss 0.01884112 - time (sec): 11.63 - samples/sec: 2775.82 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2023-10-13 22:28:07,139 epoch 7 - iter 297/992 - loss 0.02033178 - time (sec): 18.29 - samples/sec: 2712.51 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-13 22:28:13,151 epoch 7 - iter 396/992 - loss 0.02087243 - time (sec): 24.30 - samples/sec: 2732.06 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-13 22:28:19,012 epoch 7 - iter 495/992 - loss 0.02087418 - time (sec): 30.16 - samples/sec: 2747.66 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-10-13 22:28:24,686 epoch 7 - iter 594/992 - loss 0.02171817 - time (sec): 35.83 - samples/sec: 2751.03 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-13 22:28:30,346 epoch 7 - iter 693/992 - loss 0.02240224 - time (sec): 41.49 - samples/sec: 2767.35 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-13 22:28:36,072 epoch 7 - iter 792/992 - loss 0.02183838 - time (sec): 47.22 - samples/sec: 2779.85 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-10-13 22:28:41,868 epoch 7 - iter 891/992 - loss 0.02200465 - time (sec): 53.02 - samples/sec: 2773.88 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-10-13 22:28:47,905 epoch 7 - iter 990/992 - loss 0.02214401 - time (sec): 59.05 - samples/sec: 2773.37 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-10-13 22:28:48,003 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-13 22:28:48,003 EPOCH 7 done: loss 0.0221 - lr: 0.000010
|
177 |
+
2023-10-13 22:28:51,462 DEV : loss 0.18745747208595276 - f1-score (micro avg) 0.7648
|
178 |
+
2023-10-13 22:28:51,483 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-13 22:28:57,625 epoch 8 - iter 99/992 - loss 0.01733595 - time (sec): 6.14 - samples/sec: 2687.32 - lr: 0.000010 - momentum: 0.000000
|
180 |
+
2023-10-13 22:29:03,732 epoch 8 - iter 198/992 - loss 0.01451052 - time (sec): 12.25 - samples/sec: 2732.96 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-13 22:29:09,698 epoch 8 - iter 297/992 - loss 0.01458980 - time (sec): 18.21 - samples/sec: 2747.88 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-13 22:29:15,627 epoch 8 - iter 396/992 - loss 0.01434329 - time (sec): 24.14 - samples/sec: 2786.27 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-13 22:29:21,451 epoch 8 - iter 495/992 - loss 0.01589815 - time (sec): 29.97 - samples/sec: 2787.43 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-13 22:29:27,300 epoch 8 - iter 594/992 - loss 0.01547773 - time (sec): 35.82 - samples/sec: 2772.84 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-13 22:29:33,240 epoch 8 - iter 693/992 - loss 0.01546711 - time (sec): 41.76 - samples/sec: 2752.58 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-13 22:29:39,317 epoch 8 - iter 792/992 - loss 0.01554967 - time (sec): 47.83 - samples/sec: 2748.23 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-13 22:29:45,154 epoch 8 - iter 891/992 - loss 0.01624295 - time (sec): 53.67 - samples/sec: 2751.29 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-13 22:29:51,001 epoch 8 - iter 990/992 - loss 0.01584456 - time (sec): 59.52 - samples/sec: 2752.74 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-13 22:29:51,101 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-13 22:29:51,101 EPOCH 8 done: loss 0.0160 - lr: 0.000007
|
191 |
+
2023-10-13 22:29:54,567 DEV : loss 0.19708073139190674 - f1-score (micro avg) 0.7606
|
192 |
+
2023-10-13 22:29:54,588 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-13 22:30:00,193 epoch 9 - iter 99/992 - loss 0.00851250 - time (sec): 5.60 - samples/sec: 2638.38 - lr: 0.000006 - momentum: 0.000000
|
194 |
+
2023-10-13 22:30:05,871 epoch 9 - iter 198/992 - loss 0.01387637 - time (sec): 11.28 - samples/sec: 2720.77 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-13 22:30:11,835 epoch 9 - iter 297/992 - loss 0.01335263 - time (sec): 17.25 - samples/sec: 2715.07 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-10-13 22:30:17,685 epoch 9 - iter 396/992 - loss 0.01153281 - time (sec): 23.10 - samples/sec: 2735.71 - lr: 0.000005 - momentum: 0.000000
|
197 |
+
2023-10-13 22:30:23,804 epoch 9 - iter 495/992 - loss 0.01105092 - time (sec): 29.21 - samples/sec: 2740.26 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-13 22:30:29,756 epoch 9 - iter 594/992 - loss 0.01139772 - time (sec): 35.17 - samples/sec: 2748.28 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-10-13 22:30:35,469 epoch 9 - iter 693/992 - loss 0.01125951 - time (sec): 40.88 - samples/sec: 2762.21 - lr: 0.000004 - momentum: 0.000000
|
200 |
+
2023-10-13 22:30:41,410 epoch 9 - iter 792/992 - loss 0.01144688 - time (sec): 46.82 - samples/sec: 2773.64 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-13 22:30:47,347 epoch 9 - iter 891/992 - loss 0.01171083 - time (sec): 52.76 - samples/sec: 2778.18 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-10-13 22:30:53,864 epoch 9 - iter 990/992 - loss 0.01160068 - time (sec): 59.27 - samples/sec: 2759.87 - lr: 0.000003 - momentum: 0.000000
|
203 |
+
2023-10-13 22:30:53,972 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-13 22:30:53,972 EPOCH 9 done: loss 0.0116 - lr: 0.000003
|
205 |
+
2023-10-13 22:30:57,399 DEV : loss 0.21158859133720398 - f1-score (micro avg) 0.7642
|
206 |
+
2023-10-13 22:30:57,420 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-13 22:31:03,143 epoch 10 - iter 99/992 - loss 0.01294454 - time (sec): 5.72 - samples/sec: 2871.83 - lr: 0.000003 - momentum: 0.000000
|
208 |
+
2023-10-13 22:31:09,337 epoch 10 - iter 198/992 - loss 0.01174616 - time (sec): 11.92 - samples/sec: 2875.49 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-13 22:31:14,913 epoch 10 - iter 297/992 - loss 0.01070740 - time (sec): 17.49 - samples/sec: 2844.70 - lr: 0.000002 - momentum: 0.000000
|
210 |
+
2023-10-13 22:31:20,657 epoch 10 - iter 396/992 - loss 0.01045205 - time (sec): 23.24 - samples/sec: 2850.69 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-13 22:31:26,862 epoch 10 - iter 495/992 - loss 0.01098101 - time (sec): 29.44 - samples/sec: 2830.26 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-13 22:31:32,596 epoch 10 - iter 594/992 - loss 0.01073008 - time (sec): 35.18 - samples/sec: 2824.57 - lr: 0.000001 - momentum: 0.000000
|
213 |
+
2023-10-13 22:31:38,266 epoch 10 - iter 693/992 - loss 0.01015657 - time (sec): 40.85 - samples/sec: 2806.63 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-13 22:31:44,347 epoch 10 - iter 792/992 - loss 0.00973608 - time (sec): 46.93 - samples/sec: 2792.56 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-13 22:31:50,396 epoch 10 - iter 891/992 - loss 0.00928079 - time (sec): 52.98 - samples/sec: 2788.54 - lr: 0.000000 - momentum: 0.000000
|
216 |
+
2023-10-13 22:31:56,043 epoch 10 - iter 990/992 - loss 0.00889257 - time (sec): 58.62 - samples/sec: 2792.15 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-13 22:31:56,156 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-13 22:31:56,156 EPOCH 10 done: loss 0.0089 - lr: 0.000000
|
219 |
+
2023-10-13 22:31:59,648 DEV : loss 0.21550461649894714 - f1-score (micro avg) 0.7694
|
220 |
+
2023-10-13 22:32:00,091 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-13 22:32:00,092 Loading model from best epoch ...
|
222 |
+
2023-10-13 22:32:01,548 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG
|
223 |
+
2023-10-13 22:32:04,837
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.7902
|
226 |
+
- F-score (macro) 0.7068
|
227 |
+
- Accuracy 0.6763
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
LOC 0.8268 0.8748 0.8501 655
|
233 |
+
PER 0.7026 0.8475 0.7683 223
|
234 |
+
ORG 0.5259 0.4803 0.5021 127
|
235 |
+
|
236 |
+
micro avg 0.7635 0.8189 0.7902 1005
|
237 |
+
macro avg 0.6851 0.7342 0.7068 1005
|
238 |
+
weighted avg 0.7612 0.8189 0.7880 1005
|
239 |
+
|
240 |
+
2023-10-13 22:32:04,837 ----------------------------------------------------------------------------------------------------
|