2023-10-14 00:33:33,347 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:33:33,348 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=13, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-14 00:33:33,348 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:33:33,349 MultiCorpus: 7936 train + 992 dev + 992 test sentences - NER_ICDAR_EUROPEANA Corpus: 7936 train + 992 dev + 992 test sentences - /root/.flair/datasets/ner_icdar_europeana/fr 2023-10-14 00:33:33,349 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:33:33,349 Train: 7936 sentences 2023-10-14 00:33:33,349 (train_with_dev=False, train_with_test=False) 2023-10-14 00:33:33,349 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:33:33,349 Training Params: 2023-10-14 00:33:33,349 - learning_rate: "3e-05" 2023-10-14 00:33:33,349 - mini_batch_size: "4" 2023-10-14 00:33:33,349 - max_epochs: "10" 2023-10-14 00:33:33,349 - shuffle: "True" 2023-10-14 00:33:33,349 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:33:33,349 Plugins: 2023-10-14 00:33:33,349 - LinearScheduler | warmup_fraction: '0.1' 2023-10-14 00:33:33,349 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:33:33,349 Final evaluation on model from best epoch (best-model.pt) 2023-10-14 00:33:33,349 - metric: "('micro avg', 'f1-score')" 2023-10-14 00:33:33,349 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:33:33,349 Computation: 2023-10-14 00:33:33,349 - compute on device: cuda:0 2023-10-14 00:33:33,349 - embedding storage: none 2023-10-14 00:33:33,349 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:33:33,349 Model training base path: "hmbench-icdar/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5" 2023-10-14 00:33:33,349 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:33:33,349 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:33:42,420 epoch 1 - iter 198/1984 - loss 1.84648731 - time (sec): 9.07 - samples/sec: 1702.75 - lr: 0.000003 - momentum: 0.000000 2023-10-14 00:33:51,452 epoch 1 - iter 396/1984 - loss 1.08861314 - time (sec): 18.10 - samples/sec: 1741.41 - lr: 0.000006 - momentum: 0.000000 2023-10-14 00:34:00,444 epoch 1 - iter 594/1984 - loss 0.79789327 - time (sec): 27.09 - samples/sec: 1775.55 - lr: 0.000009 - momentum: 0.000000 2023-10-14 00:34:09,335 epoch 1 - iter 792/1984 - loss 0.64340507 - time (sec): 35.98 - samples/sec: 1788.69 - lr: 0.000012 - momentum: 0.000000 2023-10-14 00:34:18,432 epoch 1 - iter 990/1984 - loss 0.55085242 - time (sec): 45.08 - samples/sec: 1792.80 - lr: 0.000015 - momentum: 0.000000 2023-10-14 00:34:27,429 epoch 1 - iter 1188/1984 - loss 0.48020788 - time (sec): 54.08 - samples/sec: 1809.66 - lr: 0.000018 - momentum: 0.000000 2023-10-14 00:34:36,495 epoch 1 - iter 1386/1984 - loss 0.43363784 - time (sec): 63.14 - samples/sec: 1801.24 - lr: 0.000021 - momentum: 0.000000 2023-10-14 00:34:45,534 epoch 1 - iter 1584/1984 - loss 0.39617398 - time (sec): 72.18 - samples/sec: 1801.87 - lr: 0.000024 - momentum: 0.000000 2023-10-14 00:34:54,461 epoch 1 - iter 1782/1984 - loss 0.36780931 - time (sec): 81.11 - samples/sec: 1803.46 - lr: 0.000027 - momentum: 0.000000 2023-10-14 00:35:03,459 epoch 1 - iter 1980/1984 - loss 0.34466223 - time (sec): 90.11 - samples/sec: 1813.44 - lr: 0.000030 - momentum: 0.000000 2023-10-14 00:35:03,679 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:35:03,679 EPOCH 1 done: loss 0.3439 - lr: 0.000030 2023-10-14 00:35:06,904 DEV : loss 0.11840364336967468 - f1-score (micro avg) 0.6206 2023-10-14 00:35:06,925 saving best model 2023-10-14 00:35:07,303 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:35:16,413 epoch 2 - iter 198/1984 - loss 0.14075901 - time (sec): 9.11 - samples/sec: 1669.48 - lr: 0.000030 - momentum: 0.000000 2023-10-14 00:35:25,436 epoch 2 - iter 396/1984 - loss 0.12400082 - time (sec): 18.13 - samples/sec: 1720.40 - lr: 0.000029 - momentum: 0.000000 2023-10-14 00:35:34,763 epoch 2 - iter 594/1984 - loss 0.12219424 - time (sec): 27.46 - samples/sec: 1716.50 - lr: 0.000029 - momentum: 0.000000 2023-10-14 00:35:43,860 epoch 2 - iter 792/1984 - loss 0.11620520 - time (sec): 36.56 - samples/sec: 1741.22 - lr: 0.000029 - momentum: 0.000000 2023-10-14 00:35:52,817 epoch 2 - iter 990/1984 - loss 0.11433495 - time (sec): 45.51 - samples/sec: 1776.12 - lr: 0.000028 - momentum: 0.000000 2023-10-14 00:36:01,818 epoch 2 - iter 1188/1984 - loss 0.11548844 - time (sec): 54.51 - samples/sec: 1792.84 - lr: 0.000028 - momentum: 0.000000 2023-10-14 00:36:10,792 epoch 2 - iter 1386/1984 - loss 0.11442529 - time (sec): 63.49 - samples/sec: 1799.30 - lr: 0.000028 - momentum: 0.000000 2023-10-14 00:36:19,715 epoch 2 - iter 1584/1984 - loss 0.11261525 - time (sec): 72.41 - samples/sec: 1798.49 - lr: 0.000027 - momentum: 0.000000 2023-10-14 00:36:29,002 epoch 2 - iter 1782/1984 - loss 0.11148968 - time (sec): 81.70 - samples/sec: 1799.89 - lr: 0.000027 - momentum: 0.000000 2023-10-14 00:36:38,044 epoch 2 - iter 1980/1984 - loss 0.11272837 - time (sec): 90.74 - samples/sec: 1801.90 - lr: 0.000027 - momentum: 0.000000 2023-10-14 00:36:38,255 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:36:38,256 EPOCH 2 done: loss 0.1127 - lr: 0.000027 2023-10-14 00:36:41,653 DEV : loss 0.12019851058721542 - f1-score (micro avg) 0.7239 2023-10-14 00:36:41,675 saving best model 2023-10-14 00:36:42,206 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:36:51,213 epoch 3 - iter 198/1984 - loss 0.06749262 - time (sec): 9.01 - samples/sec: 1676.79 - lr: 0.000026 - momentum: 0.000000 2023-10-14 00:37:00,237 epoch 3 - iter 396/1984 - loss 0.07556813 - time (sec): 18.03 - samples/sec: 1799.64 - lr: 0.000026 - momentum: 0.000000 2023-10-14 00:37:09,114 epoch 3 - iter 594/1984 - loss 0.07935076 - time (sec): 26.91 - samples/sec: 1779.72 - lr: 0.000026 - momentum: 0.000000 2023-10-14 00:37:18,151 epoch 3 - iter 792/1984 - loss 0.08102940 - time (sec): 35.94 - samples/sec: 1773.27 - lr: 0.000025 - momentum: 0.000000 2023-10-14 00:37:27,454 epoch 3 - iter 990/1984 - loss 0.07941764 - time (sec): 45.25 - samples/sec: 1800.13 - lr: 0.000025 - momentum: 0.000000 2023-10-14 00:37:36,997 epoch 3 - iter 1188/1984 - loss 0.08141394 - time (sec): 54.79 - samples/sec: 1785.56 - lr: 0.000025 - momentum: 0.000000 2023-10-14 00:37:46,204 epoch 3 - iter 1386/1984 - loss 0.08073553 - time (sec): 64.00 - samples/sec: 1790.81 - lr: 0.000024 - momentum: 0.000000 2023-10-14 00:37:55,490 epoch 3 - iter 1584/1984 - loss 0.08000645 - time (sec): 73.28 - samples/sec: 1792.85 - lr: 0.000024 - momentum: 0.000000 2023-10-14 00:38:04,457 epoch 3 - iter 1782/1984 - loss 0.08063126 - time (sec): 82.25 - samples/sec: 1786.95 - lr: 0.000024 - momentum: 0.000000 2023-10-14 00:38:13,357 epoch 3 - iter 1980/1984 - loss 0.08177117 - time (sec): 91.15 - samples/sec: 1794.98 - lr: 0.000023 - momentum: 0.000000 2023-10-14 00:38:13,537 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:38:13,537 EPOCH 3 done: loss 0.0817 - lr: 0.000023 2023-10-14 00:38:17,007 DEV : loss 0.1288405805826187 - f1-score (micro avg) 0.763 2023-10-14 00:38:17,032 saving best model 2023-10-14 00:38:17,503 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:38:26,719 epoch 4 - iter 198/1984 - loss 0.05060713 - time (sec): 9.21 - samples/sec: 1901.80 - lr: 0.000023 - momentum: 0.000000 2023-10-14 00:38:35,936 epoch 4 - iter 396/1984 - loss 0.05243662 - time (sec): 18.43 - samples/sec: 1833.07 - lr: 0.000023 - momentum: 0.000000 2023-10-14 00:38:44,927 epoch 4 - iter 594/1984 - loss 0.05486600 - time (sec): 27.42 - samples/sec: 1826.93 - lr: 0.000022 - momentum: 0.000000 2023-10-14 00:38:54,019 epoch 4 - iter 792/1984 - loss 0.05512558 - time (sec): 36.51 - samples/sec: 1809.34 - lr: 0.000022 - momentum: 0.000000 2023-10-14 00:39:03,272 epoch 4 - iter 990/1984 - loss 0.05454064 - time (sec): 45.76 - samples/sec: 1807.82 - lr: 0.000022 - momentum: 0.000000 2023-10-14 00:39:12,825 epoch 4 - iter 1188/1984 - loss 0.05627708 - time (sec): 55.32 - samples/sec: 1785.28 - lr: 0.000021 - momentum: 0.000000 2023-10-14 00:39:21,891 epoch 4 - iter 1386/1984 - loss 0.05694993 - time (sec): 64.38 - samples/sec: 1775.39 - lr: 0.000021 - momentum: 0.000000 2023-10-14 00:39:30,648 epoch 4 - iter 1584/1984 - loss 0.05757246 - time (sec): 73.14 - samples/sec: 1784.06 - lr: 0.000021 - momentum: 0.000000 2023-10-14 00:39:39,551 epoch 4 - iter 1782/1984 - loss 0.05843888 - time (sec): 82.04 - samples/sec: 1781.71 - lr: 0.000020 - momentum: 0.000000 2023-10-14 00:39:48,827 epoch 4 - iter 1980/1984 - loss 0.06142881 - time (sec): 91.32 - samples/sec: 1792.12 - lr: 0.000020 - momentum: 0.000000 2023-10-14 00:39:49,033 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:39:49,033 EPOCH 4 done: loss 0.0614 - lr: 0.000020 2023-10-14 00:39:52,419 DEV : loss 0.14116324484348297 - f1-score (micro avg) 0.7451 2023-10-14 00:39:52,439 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:40:01,484 epoch 5 - iter 198/1984 - loss 0.04525493 - time (sec): 9.04 - samples/sec: 1830.03 - lr: 0.000020 - momentum: 0.000000 2023-10-14 00:40:10,539 epoch 5 - iter 396/1984 - loss 0.04542360 - time (sec): 18.10 - samples/sec: 1842.65 - lr: 0.000019 - momentum: 0.000000 2023-10-14 00:40:19,522 epoch 5 - iter 594/1984 - loss 0.04551483 - time (sec): 27.08 - samples/sec: 1820.33 - lr: 0.000019 - momentum: 0.000000 2023-10-14 00:40:28,471 epoch 5 - iter 792/1984 - loss 0.04325209 - time (sec): 36.03 - samples/sec: 1828.91 - lr: 0.000019 - momentum: 0.000000 2023-10-14 00:40:37,434 epoch 5 - iter 990/1984 - loss 0.04250521 - time (sec): 44.99 - samples/sec: 1829.61 - lr: 0.000018 - momentum: 0.000000 2023-10-14 00:40:46,472 epoch 5 - iter 1188/1984 - loss 0.04318675 - time (sec): 54.03 - samples/sec: 1830.16 - lr: 0.000018 - momentum: 0.000000 2023-10-14 00:40:55,443 epoch 5 - iter 1386/1984 - loss 0.04436125 - time (sec): 63.00 - samples/sec: 1812.70 - lr: 0.000018 - momentum: 0.000000 2023-10-14 00:41:04,539 epoch 5 - iter 1584/1984 - loss 0.04521410 - time (sec): 72.10 - samples/sec: 1820.00 - lr: 0.000017 - momentum: 0.000000 2023-10-14 00:41:13,633 epoch 5 - iter 1782/1984 - loss 0.04534807 - time (sec): 81.19 - samples/sec: 1813.67 - lr: 0.000017 - momentum: 0.000000 2023-10-14 00:41:22,673 epoch 5 - iter 1980/1984 - loss 0.04610443 - time (sec): 90.23 - samples/sec: 1814.23 - lr: 0.000017 - momentum: 0.000000 2023-10-14 00:41:22,851 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:41:22,851 EPOCH 5 done: loss 0.0461 - lr: 0.000017 2023-10-14 00:41:26,783 DEV : loss 0.15994729101657867 - f1-score (micro avg) 0.7573 2023-10-14 00:41:26,804 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:41:36,094 epoch 6 - iter 198/1984 - loss 0.04012582 - time (sec): 9.29 - samples/sec: 1865.57 - lr: 0.000016 - momentum: 0.000000 2023-10-14 00:41:45,056 epoch 6 - iter 396/1984 - loss 0.03880028 - time (sec): 18.25 - samples/sec: 1830.40 - lr: 0.000016 - momentum: 0.000000 2023-10-14 00:41:54,099 epoch 6 - iter 594/1984 - loss 0.03591012 - time (sec): 27.29 - samples/sec: 1803.29 - lr: 0.000016 - momentum: 0.000000 2023-10-14 00:42:03,182 epoch 6 - iter 792/1984 - loss 0.03583443 - time (sec): 36.38 - samples/sec: 1810.54 - lr: 0.000015 - momentum: 0.000000 2023-10-14 00:42:12,153 epoch 6 - iter 990/1984 - loss 0.03618946 - time (sec): 45.35 - samples/sec: 1818.44 - lr: 0.000015 - momentum: 0.000000 2023-10-14 00:42:21,087 epoch 6 - iter 1188/1984 - loss 0.03540426 - time (sec): 54.28 - samples/sec: 1812.97 - lr: 0.000015 - momentum: 0.000000 2023-10-14 00:42:30,099 epoch 6 - iter 1386/1984 - loss 0.03591058 - time (sec): 63.29 - samples/sec: 1812.29 - lr: 0.000014 - momentum: 0.000000 2023-10-14 00:42:39,105 epoch 6 - iter 1584/1984 - loss 0.03527012 - time (sec): 72.30 - samples/sec: 1813.34 - lr: 0.000014 - momentum: 0.000000 2023-10-14 00:42:48,273 epoch 6 - iter 1782/1984 - loss 0.03466812 - time (sec): 81.47 - samples/sec: 1817.65 - lr: 0.000014 - momentum: 0.000000 2023-10-14 00:42:57,276 epoch 6 - iter 1980/1984 - loss 0.03459241 - time (sec): 90.47 - samples/sec: 1809.43 - lr: 0.000013 - momentum: 0.000000 2023-10-14 00:42:57,461 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:42:57,461 EPOCH 6 done: loss 0.0345 - lr: 0.000013 2023-10-14 00:43:00,862 DEV : loss 0.1856544464826584 - f1-score (micro avg) 0.7573 2023-10-14 00:43:00,883 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:43:09,962 epoch 7 - iter 198/1984 - loss 0.02135452 - time (sec): 9.08 - samples/sec: 1781.01 - lr: 0.000013 - momentum: 0.000000 2023-10-14 00:43:18,579 epoch 7 - iter 396/1984 - loss 0.02314302 - time (sec): 17.70 - samples/sec: 1814.63 - lr: 0.000013 - momentum: 0.000000 2023-10-14 00:43:27,249 epoch 7 - iter 594/1984 - loss 0.02014483 - time (sec): 26.36 - samples/sec: 1861.63 - lr: 0.000012 - momentum: 0.000000 2023-10-14 00:43:35,932 epoch 7 - iter 792/1984 - loss 0.02217636 - time (sec): 35.05 - samples/sec: 1872.99 - lr: 0.000012 - momentum: 0.000000 2023-10-14 00:43:44,530 epoch 7 - iter 990/1984 - loss 0.02248853 - time (sec): 43.65 - samples/sec: 1870.13 - lr: 0.000012 - momentum: 0.000000 2023-10-14 00:43:53,208 epoch 7 - iter 1188/1984 - loss 0.02281695 - time (sec): 52.32 - samples/sec: 1878.85 - lr: 0.000011 - momentum: 0.000000 2023-10-14 00:44:01,962 epoch 7 - iter 1386/1984 - loss 0.02260346 - time (sec): 61.08 - samples/sec: 1883.39 - lr: 0.000011 - momentum: 0.000000 2023-10-14 00:44:10,588 epoch 7 - iter 1584/1984 - loss 0.02346248 - time (sec): 69.70 - samples/sec: 1881.17 - lr: 0.000011 - momentum: 0.000000 2023-10-14 00:44:19,772 epoch 7 - iter 1782/1984 - loss 0.02378911 - time (sec): 78.89 - samples/sec: 1869.24 - lr: 0.000010 - momentum: 0.000000 2023-10-14 00:44:28,729 epoch 7 - iter 1980/1984 - loss 0.02373852 - time (sec): 87.84 - samples/sec: 1862.99 - lr: 0.000010 - momentum: 0.000000 2023-10-14 00:44:28,901 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:44:28,901 EPOCH 7 done: loss 0.0238 - lr: 0.000010 2023-10-14 00:44:32,838 DEV : loss 0.19240804016590118 - f1-score (micro avg) 0.7615 2023-10-14 00:44:32,859 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:44:41,845 epoch 8 - iter 198/1984 - loss 0.01575059 - time (sec): 8.98 - samples/sec: 1912.11 - lr: 0.000010 - momentum: 0.000000 2023-10-14 00:44:50,888 epoch 8 - iter 396/1984 - loss 0.01422090 - time (sec): 18.03 - samples/sec: 1844.50 - lr: 0.000009 - momentum: 0.000000 2023-10-14 00:44:59,843 epoch 8 - iter 594/1984 - loss 0.01545793 - time (sec): 26.98 - samples/sec: 1809.45 - lr: 0.000009 - momentum: 0.000000 2023-10-14 00:45:09,054 epoch 8 - iter 792/1984 - loss 0.01632885 - time (sec): 36.19 - samples/sec: 1826.74 - lr: 0.000009 - momentum: 0.000000 2023-10-14 00:45:18,131 epoch 8 - iter 990/1984 - loss 0.01657672 - time (sec): 45.27 - samples/sec: 1833.70 - lr: 0.000008 - momentum: 0.000000 2023-10-14 00:45:27,193 epoch 8 - iter 1188/1984 - loss 0.01688354 - time (sec): 54.33 - samples/sec: 1838.93 - lr: 0.000008 - momentum: 0.000000 2023-10-14 00:45:36,076 epoch 8 - iter 1386/1984 - loss 0.01653230 - time (sec): 63.22 - samples/sec: 1837.14 - lr: 0.000008 - momentum: 0.000000 2023-10-14 00:45:45,263 epoch 8 - iter 1584/1984 - loss 0.01631411 - time (sec): 72.40 - samples/sec: 1821.74 - lr: 0.000007 - momentum: 0.000000 2023-10-14 00:45:54,512 epoch 8 - iter 1782/1984 - loss 0.01666752 - time (sec): 81.65 - samples/sec: 1811.34 - lr: 0.000007 - momentum: 0.000000 2023-10-14 00:46:03,561 epoch 8 - iter 1980/1984 - loss 0.01708603 - time (sec): 90.70 - samples/sec: 1805.56 - lr: 0.000007 - momentum: 0.000000 2023-10-14 00:46:03,739 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:46:03,739 EPOCH 8 done: loss 0.0171 - lr: 0.000007 2023-10-14 00:46:07,144 DEV : loss 0.20113840699195862 - f1-score (micro avg) 0.7714 2023-10-14 00:46:07,165 saving best model 2023-10-14 00:46:07,687 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:46:16,719 epoch 9 - iter 198/1984 - loss 0.01121190 - time (sec): 9.03 - samples/sec: 1791.90 - lr: 0.000006 - momentum: 0.000000 2023-10-14 00:46:25,702 epoch 9 - iter 396/1984 - loss 0.01335710 - time (sec): 18.01 - samples/sec: 1844.29 - lr: 0.000006 - momentum: 0.000000 2023-10-14 00:46:34,718 epoch 9 - iter 594/1984 - loss 0.01317916 - time (sec): 27.03 - samples/sec: 1851.45 - lr: 0.000006 - momentum: 0.000000 2023-10-14 00:46:43,597 epoch 9 - iter 792/1984 - loss 0.01271864 - time (sec): 35.91 - samples/sec: 1828.80 - lr: 0.000005 - momentum: 0.000000 2023-10-14 00:46:52,551 epoch 9 - iter 990/1984 - loss 0.01201250 - time (sec): 44.86 - samples/sec: 1834.11 - lr: 0.000005 - momentum: 0.000000 2023-10-14 00:47:01,618 epoch 9 - iter 1188/1984 - loss 0.01186694 - time (sec): 53.93 - samples/sec: 1830.03 - lr: 0.000005 - momentum: 0.000000 2023-10-14 00:47:10,838 epoch 9 - iter 1386/1984 - loss 0.01295976 - time (sec): 63.15 - samples/sec: 1817.33 - lr: 0.000004 - momentum: 0.000000 2023-10-14 00:47:19,883 epoch 9 - iter 1584/1984 - loss 0.01303216 - time (sec): 72.19 - samples/sec: 1825.07 - lr: 0.000004 - momentum: 0.000000 2023-10-14 00:47:28,749 epoch 9 - iter 1782/1984 - loss 0.01278500 - time (sec): 81.06 - samples/sec: 1821.39 - lr: 0.000004 - momentum: 0.000000 2023-10-14 00:47:37,683 epoch 9 - iter 1980/1984 - loss 0.01286673 - time (sec): 89.99 - samples/sec: 1817.30 - lr: 0.000003 - momentum: 0.000000 2023-10-14 00:47:37,879 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:47:37,879 EPOCH 9 done: loss 0.0128 - lr: 0.000003 2023-10-14 00:47:41,336 DEV : loss 0.2166709452867508 - f1-score (micro avg) 0.7711 2023-10-14 00:47:41,357 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:47:50,410 epoch 10 - iter 198/1984 - loss 0.00699997 - time (sec): 9.05 - samples/sec: 1941.31 - lr: 0.000003 - momentum: 0.000000 2023-10-14 00:47:59,477 epoch 10 - iter 396/1984 - loss 0.00743539 - time (sec): 18.12 - samples/sec: 1881.47 - lr: 0.000003 - momentum: 0.000000 2023-10-14 00:48:08,429 epoch 10 - iter 594/1984 - loss 0.00701043 - time (sec): 27.07 - samples/sec: 1816.63 - lr: 0.000002 - momentum: 0.000000 2023-10-14 00:48:17,379 epoch 10 - iter 792/1984 - loss 0.00691793 - time (sec): 36.02 - samples/sec: 1826.01 - lr: 0.000002 - momentum: 0.000000 2023-10-14 00:48:26,370 epoch 10 - iter 990/1984 - loss 0.00733336 - time (sec): 45.01 - samples/sec: 1829.49 - lr: 0.000002 - momentum: 0.000000 2023-10-14 00:48:35,376 epoch 10 - iter 1188/1984 - loss 0.00787838 - time (sec): 54.02 - samples/sec: 1821.42 - lr: 0.000001 - momentum: 0.000000 2023-10-14 00:48:44,332 epoch 10 - iter 1386/1984 - loss 0.00801026 - time (sec): 62.97 - samples/sec: 1820.26 - lr: 0.000001 - momentum: 0.000000 2023-10-14 00:48:53,392 epoch 10 - iter 1584/1984 - loss 0.00795308 - time (sec): 72.03 - samples/sec: 1822.69 - lr: 0.000001 - momentum: 0.000000 2023-10-14 00:49:02,320 epoch 10 - iter 1782/1984 - loss 0.00774112 - time (sec): 80.96 - samples/sec: 1826.42 - lr: 0.000000 - momentum: 0.000000 2023-10-14 00:49:11,494 epoch 10 - iter 1980/1984 - loss 0.00777068 - time (sec): 90.14 - samples/sec: 1816.02 - lr: 0.000000 - momentum: 0.000000 2023-10-14 00:49:11,673 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:49:11,673 EPOCH 10 done: loss 0.0078 - lr: 0.000000 2023-10-14 00:49:15,510 DEV : loss 0.22600804269313812 - f1-score (micro avg) 0.7689 2023-10-14 00:49:15,955 ---------------------------------------------------------------------------------------------------- 2023-10-14 00:49:15,956 Loading model from best epoch ... 2023-10-14 00:49:17,330 SequenceTagger predicts: Dictionary with 13 tags: O, S-PER, B-PER, E-PER, I-PER, S-LOC, B-LOC, E-LOC, I-LOC, S-ORG, B-ORG, E-ORG, I-ORG 2023-10-14 00:49:20,598 Results: - F-score (micro) 0.7769 - F-score (macro) 0.6893 - Accuracy 0.6567 By class: precision recall f1-score support LOC 0.8162 0.8473 0.8315 655 PER 0.7083 0.8386 0.7680 223 ORG 0.5474 0.4094 0.4685 127 micro avg 0.7642 0.7900 0.7769 1005 macro avg 0.6906 0.6984 0.6893 1005 weighted avg 0.7583 0.7900 0.7715 1005 2023-10-14 00:49:20,598 ----------------------------------------------------------------------------------------------------