File size: 24,142 Bytes
75710eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
2023-10-13 15:16:58,271 ----------------------------------------------------------------------------------------------------
2023-10-13 15:16:58,272 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=21, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-13 15:16:58,272 ----------------------------------------------------------------------------------------------------
2023-10-13 15:16:58,272 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
 - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
2023-10-13 15:16:58,272 ----------------------------------------------------------------------------------------------------
2023-10-13 15:16:58,272 Train:  5901 sentences
2023-10-13 15:16:58,272         (train_with_dev=False, train_with_test=False)
2023-10-13 15:16:58,272 ----------------------------------------------------------------------------------------------------
2023-10-13 15:16:58,272 Training Params:
2023-10-13 15:16:58,272  - learning_rate: "5e-05" 
2023-10-13 15:16:58,272  - mini_batch_size: "8"
2023-10-13 15:16:58,272  - max_epochs: "10"
2023-10-13 15:16:58,272  - shuffle: "True"
2023-10-13 15:16:58,272 ----------------------------------------------------------------------------------------------------
2023-10-13 15:16:58,272 Plugins:
2023-10-13 15:16:58,272  - LinearScheduler | warmup_fraction: '0.1'
2023-10-13 15:16:58,272 ----------------------------------------------------------------------------------------------------
2023-10-13 15:16:58,273 Final evaluation on model from best epoch (best-model.pt)
2023-10-13 15:16:58,273  - metric: "('micro avg', 'f1-score')"
2023-10-13 15:16:58,273 ----------------------------------------------------------------------------------------------------
2023-10-13 15:16:58,273 Computation:
2023-10-13 15:16:58,273  - compute on device: cuda:0
2023-10-13 15:16:58,273  - embedding storage: none
2023-10-13 15:16:58,273 ----------------------------------------------------------------------------------------------------
2023-10-13 15:16:58,273 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
2023-10-13 15:16:58,273 ----------------------------------------------------------------------------------------------------
2023-10-13 15:16:58,273 ----------------------------------------------------------------------------------------------------
2023-10-13 15:17:03,084 epoch 1 - iter 73/738 - loss 2.74602808 - time (sec): 4.81 - samples/sec: 3466.71 - lr: 0.000005 - momentum: 0.000000
2023-10-13 15:17:07,826 epoch 1 - iter 146/738 - loss 1.71361771 - time (sec): 9.55 - samples/sec: 3449.67 - lr: 0.000010 - momentum: 0.000000
2023-10-13 15:17:13,391 epoch 1 - iter 219/738 - loss 1.24565664 - time (sec): 15.12 - samples/sec: 3430.28 - lr: 0.000015 - momentum: 0.000000
2023-10-13 15:17:17,821 epoch 1 - iter 292/738 - loss 1.03626899 - time (sec): 19.55 - samples/sec: 3433.30 - lr: 0.000020 - momentum: 0.000000
2023-10-13 15:17:22,517 epoch 1 - iter 365/738 - loss 0.89538384 - time (sec): 24.24 - samples/sec: 3426.05 - lr: 0.000025 - momentum: 0.000000
2023-10-13 15:17:27,166 epoch 1 - iter 438/738 - loss 0.79251444 - time (sec): 28.89 - samples/sec: 3409.99 - lr: 0.000030 - momentum: 0.000000
2023-10-13 15:17:31,550 epoch 1 - iter 511/738 - loss 0.71725793 - time (sec): 33.28 - samples/sec: 3417.41 - lr: 0.000035 - momentum: 0.000000
2023-10-13 15:17:36,209 epoch 1 - iter 584/738 - loss 0.65519603 - time (sec): 37.94 - samples/sec: 3398.73 - lr: 0.000039 - momentum: 0.000000
2023-10-13 15:17:41,869 epoch 1 - iter 657/738 - loss 0.59427688 - time (sec): 43.60 - samples/sec: 3399.96 - lr: 0.000044 - momentum: 0.000000
2023-10-13 15:17:46,971 epoch 1 - iter 730/738 - loss 0.55319814 - time (sec): 48.70 - samples/sec: 3385.84 - lr: 0.000049 - momentum: 0.000000
2023-10-13 15:17:47,413 ----------------------------------------------------------------------------------------------------
2023-10-13 15:17:47,413 EPOCH 1 done: loss 0.5489 - lr: 0.000049
2023-10-13 15:17:53,443 DEV : loss 0.14253994822502136 - f1-score (micro avg)  0.7035
2023-10-13 15:17:53,476 saving best model
2023-10-13 15:17:53,841 ----------------------------------------------------------------------------------------------------
2023-10-13 15:17:58,952 epoch 2 - iter 73/738 - loss 0.15502447 - time (sec): 5.11 - samples/sec: 3311.80 - lr: 0.000049 - momentum: 0.000000
2023-10-13 15:18:03,246 epoch 2 - iter 146/738 - loss 0.14085048 - time (sec): 9.40 - samples/sec: 3306.19 - lr: 0.000049 - momentum: 0.000000
2023-10-13 15:18:08,012 epoch 2 - iter 219/738 - loss 0.13869781 - time (sec): 14.17 - samples/sec: 3275.65 - lr: 0.000048 - momentum: 0.000000
2023-10-13 15:18:12,900 epoch 2 - iter 292/738 - loss 0.13704243 - time (sec): 19.06 - samples/sec: 3288.19 - lr: 0.000048 - momentum: 0.000000
2023-10-13 15:18:17,212 epoch 2 - iter 365/738 - loss 0.13342204 - time (sec): 23.37 - samples/sec: 3336.73 - lr: 0.000047 - momentum: 0.000000
2023-10-13 15:18:23,427 epoch 2 - iter 438/738 - loss 0.13259264 - time (sec): 29.58 - samples/sec: 3372.56 - lr: 0.000047 - momentum: 0.000000
2023-10-13 15:18:28,287 epoch 2 - iter 511/738 - loss 0.13044756 - time (sec): 34.44 - samples/sec: 3369.54 - lr: 0.000046 - momentum: 0.000000
2023-10-13 15:18:33,290 epoch 2 - iter 584/738 - loss 0.12937219 - time (sec): 39.45 - samples/sec: 3358.12 - lr: 0.000046 - momentum: 0.000000
2023-10-13 15:18:38,093 epoch 2 - iter 657/738 - loss 0.12659105 - time (sec): 44.25 - samples/sec: 3367.71 - lr: 0.000045 - momentum: 0.000000
2023-10-13 15:18:42,598 epoch 2 - iter 730/738 - loss 0.12317234 - time (sec): 48.76 - samples/sec: 3378.72 - lr: 0.000045 - momentum: 0.000000
2023-10-13 15:18:43,094 ----------------------------------------------------------------------------------------------------
2023-10-13 15:18:43,095 EPOCH 2 done: loss 0.1229 - lr: 0.000045
2023-10-13 15:18:54,371 DEV : loss 0.11215972900390625 - f1-score (micro avg)  0.7691
2023-10-13 15:18:54,406 saving best model
2023-10-13 15:18:54,884 ----------------------------------------------------------------------------------------------------
2023-10-13 15:18:59,693 epoch 3 - iter 73/738 - loss 0.07421766 - time (sec): 4.81 - samples/sec: 3162.11 - lr: 0.000044 - momentum: 0.000000
2023-10-13 15:19:04,307 epoch 3 - iter 146/738 - loss 0.06446355 - time (sec): 9.42 - samples/sec: 3312.82 - lr: 0.000043 - momentum: 0.000000
2023-10-13 15:19:09,071 epoch 3 - iter 219/738 - loss 0.07063195 - time (sec): 14.18 - samples/sec: 3406.91 - lr: 0.000043 - momentum: 0.000000
2023-10-13 15:19:14,191 epoch 3 - iter 292/738 - loss 0.07392124 - time (sec): 19.30 - samples/sec: 3389.06 - lr: 0.000042 - momentum: 0.000000
2023-10-13 15:19:19,271 epoch 3 - iter 365/738 - loss 0.07638465 - time (sec): 24.38 - samples/sec: 3400.77 - lr: 0.000042 - momentum: 0.000000
2023-10-13 15:19:23,948 epoch 3 - iter 438/738 - loss 0.07585899 - time (sec): 29.06 - samples/sec: 3367.56 - lr: 0.000041 - momentum: 0.000000
2023-10-13 15:19:29,191 epoch 3 - iter 511/738 - loss 0.07494694 - time (sec): 34.30 - samples/sec: 3332.95 - lr: 0.000041 - momentum: 0.000000
2023-10-13 15:19:34,643 epoch 3 - iter 584/738 - loss 0.07368203 - time (sec): 39.76 - samples/sec: 3303.06 - lr: 0.000040 - momentum: 0.000000
2023-10-13 15:19:39,452 epoch 3 - iter 657/738 - loss 0.07370863 - time (sec): 44.57 - samples/sec: 3315.19 - lr: 0.000040 - momentum: 0.000000
2023-10-13 15:19:44,937 epoch 3 - iter 730/738 - loss 0.07293039 - time (sec): 50.05 - samples/sec: 3293.55 - lr: 0.000039 - momentum: 0.000000
2023-10-13 15:19:45,384 ----------------------------------------------------------------------------------------------------
2023-10-13 15:19:45,385 EPOCH 3 done: loss 0.0725 - lr: 0.000039
2023-10-13 15:19:56,548 DEV : loss 0.12536022067070007 - f1-score (micro avg)  0.7764
2023-10-13 15:19:56,576 saving best model
2023-10-13 15:19:57,053 ----------------------------------------------------------------------------------------------------
2023-10-13 15:20:01,765 epoch 4 - iter 73/738 - loss 0.04276265 - time (sec): 4.70 - samples/sec: 3350.13 - lr: 0.000038 - momentum: 0.000000
2023-10-13 15:20:06,911 epoch 4 - iter 146/738 - loss 0.05179007 - time (sec): 9.85 - samples/sec: 3393.82 - lr: 0.000038 - momentum: 0.000000
2023-10-13 15:20:12,365 epoch 4 - iter 219/738 - loss 0.04965902 - time (sec): 15.30 - samples/sec: 3402.43 - lr: 0.000037 - momentum: 0.000000
2023-10-13 15:20:17,046 epoch 4 - iter 292/738 - loss 0.04941122 - time (sec): 19.98 - samples/sec: 3373.66 - lr: 0.000037 - momentum: 0.000000
2023-10-13 15:20:21,696 epoch 4 - iter 365/738 - loss 0.04819576 - time (sec): 24.63 - samples/sec: 3367.59 - lr: 0.000036 - momentum: 0.000000
2023-10-13 15:20:26,064 epoch 4 - iter 438/738 - loss 0.04826942 - time (sec): 29.00 - samples/sec: 3362.01 - lr: 0.000036 - momentum: 0.000000
2023-10-13 15:20:31,211 epoch 4 - iter 511/738 - loss 0.04765206 - time (sec): 34.15 - samples/sec: 3370.67 - lr: 0.000035 - momentum: 0.000000
2023-10-13 15:20:35,872 epoch 4 - iter 584/738 - loss 0.04844213 - time (sec): 38.81 - samples/sec: 3360.11 - lr: 0.000035 - momentum: 0.000000
2023-10-13 15:20:41,280 epoch 4 - iter 657/738 - loss 0.04959664 - time (sec): 44.22 - samples/sec: 3353.98 - lr: 0.000034 - momentum: 0.000000
2023-10-13 15:20:46,071 epoch 4 - iter 730/738 - loss 0.04971863 - time (sec): 49.01 - samples/sec: 3365.56 - lr: 0.000033 - momentum: 0.000000
2023-10-13 15:20:46,528 ----------------------------------------------------------------------------------------------------
2023-10-13 15:20:46,528 EPOCH 4 done: loss 0.0497 - lr: 0.000033
2023-10-13 15:20:57,722 DEV : loss 0.1647169589996338 - f1-score (micro avg)  0.8109
2023-10-13 15:20:57,752 saving best model
2023-10-13 15:20:58,245 ----------------------------------------------------------------------------------------------------
2023-10-13 15:21:02,849 epoch 5 - iter 73/738 - loss 0.03178351 - time (sec): 4.59 - samples/sec: 3344.00 - lr: 0.000033 - momentum: 0.000000
2023-10-13 15:21:07,618 epoch 5 - iter 146/738 - loss 0.03011420 - time (sec): 9.36 - samples/sec: 3338.50 - lr: 0.000032 - momentum: 0.000000
2023-10-13 15:21:12,677 epoch 5 - iter 219/738 - loss 0.03759577 - time (sec): 14.42 - samples/sec: 3368.79 - lr: 0.000032 - momentum: 0.000000
2023-10-13 15:21:17,375 epoch 5 - iter 292/738 - loss 0.03522125 - time (sec): 19.12 - samples/sec: 3345.28 - lr: 0.000031 - momentum: 0.000000
2023-10-13 15:21:22,615 epoch 5 - iter 365/738 - loss 0.03386361 - time (sec): 24.36 - samples/sec: 3343.37 - lr: 0.000031 - momentum: 0.000000
2023-10-13 15:21:27,708 epoch 5 - iter 438/738 - loss 0.03481830 - time (sec): 29.45 - samples/sec: 3340.69 - lr: 0.000030 - momentum: 0.000000
2023-10-13 15:21:32,309 epoch 5 - iter 511/738 - loss 0.03493902 - time (sec): 34.05 - samples/sec: 3343.79 - lr: 0.000030 - momentum: 0.000000
2023-10-13 15:21:37,167 epoch 5 - iter 584/738 - loss 0.03490208 - time (sec): 38.91 - samples/sec: 3339.05 - lr: 0.000029 - momentum: 0.000000
2023-10-13 15:21:42,940 epoch 5 - iter 657/738 - loss 0.03505144 - time (sec): 44.68 - samples/sec: 3320.83 - lr: 0.000028 - momentum: 0.000000
2023-10-13 15:21:47,947 epoch 5 - iter 730/738 - loss 0.03538729 - time (sec): 49.69 - samples/sec: 3320.50 - lr: 0.000028 - momentum: 0.000000
2023-10-13 15:21:48,393 ----------------------------------------------------------------------------------------------------
2023-10-13 15:21:48,393 EPOCH 5 done: loss 0.0353 - lr: 0.000028
2023-10-13 15:21:59,731 DEV : loss 0.16715505719184875 - f1-score (micro avg)  0.8129
2023-10-13 15:21:59,762 saving best model
2023-10-13 15:22:00,272 ----------------------------------------------------------------------------------------------------
2023-10-13 15:22:05,043 epoch 6 - iter 73/738 - loss 0.03487724 - time (sec): 4.76 - samples/sec: 3137.17 - lr: 0.000027 - momentum: 0.000000
2023-10-13 15:22:09,824 epoch 6 - iter 146/738 - loss 0.02962974 - time (sec): 9.54 - samples/sec: 3178.81 - lr: 0.000027 - momentum: 0.000000
2023-10-13 15:22:15,490 epoch 6 - iter 219/738 - loss 0.02757779 - time (sec): 15.21 - samples/sec: 3232.17 - lr: 0.000026 - momentum: 0.000000
2023-10-13 15:22:20,455 epoch 6 - iter 292/738 - loss 0.02874868 - time (sec): 20.17 - samples/sec: 3225.44 - lr: 0.000026 - momentum: 0.000000
2023-10-13 15:22:25,165 epoch 6 - iter 365/738 - loss 0.02763650 - time (sec): 24.88 - samples/sec: 3254.83 - lr: 0.000025 - momentum: 0.000000
2023-10-13 15:22:30,551 epoch 6 - iter 438/738 - loss 0.02686535 - time (sec): 30.27 - samples/sec: 3271.81 - lr: 0.000025 - momentum: 0.000000
2023-10-13 15:22:35,096 epoch 6 - iter 511/738 - loss 0.02587544 - time (sec): 34.82 - samples/sec: 3279.27 - lr: 0.000024 - momentum: 0.000000
2023-10-13 15:22:39,857 epoch 6 - iter 584/738 - loss 0.02553302 - time (sec): 39.58 - samples/sec: 3288.34 - lr: 0.000023 - momentum: 0.000000
2023-10-13 15:22:45,402 epoch 6 - iter 657/738 - loss 0.02568474 - time (sec): 45.12 - samples/sec: 3304.11 - lr: 0.000023 - momentum: 0.000000
2023-10-13 15:22:50,134 epoch 6 - iter 730/738 - loss 0.02547133 - time (sec): 49.85 - samples/sec: 3306.39 - lr: 0.000022 - momentum: 0.000000
2023-10-13 15:22:50,602 ----------------------------------------------------------------------------------------------------
2023-10-13 15:22:50,602 EPOCH 6 done: loss 0.0254 - lr: 0.000022
2023-10-13 15:23:03,139 DEV : loss 0.19820576906204224 - f1-score (micro avg)  0.8153
2023-10-13 15:23:03,177 saving best model
2023-10-13 15:23:03,721 ----------------------------------------------------------------------------------------------------
2023-10-13 15:23:08,470 epoch 7 - iter 73/738 - loss 0.01207347 - time (sec): 4.75 - samples/sec: 3203.00 - lr: 0.000022 - momentum: 0.000000
2023-10-13 15:23:14,759 epoch 7 - iter 146/738 - loss 0.01791847 - time (sec): 11.04 - samples/sec: 3047.72 - lr: 0.000021 - momentum: 0.000000
2023-10-13 15:23:19,307 epoch 7 - iter 219/738 - loss 0.01769644 - time (sec): 15.58 - samples/sec: 3125.38 - lr: 0.000021 - momentum: 0.000000
2023-10-13 15:23:24,645 epoch 7 - iter 292/738 - loss 0.01842221 - time (sec): 20.92 - samples/sec: 3096.35 - lr: 0.000020 - momentum: 0.000000
2023-10-13 15:23:29,789 epoch 7 - iter 365/738 - loss 0.01783206 - time (sec): 26.07 - samples/sec: 3137.84 - lr: 0.000020 - momentum: 0.000000
2023-10-13 15:23:34,922 epoch 7 - iter 438/738 - loss 0.01767386 - time (sec): 31.20 - samples/sec: 3200.09 - lr: 0.000019 - momentum: 0.000000
2023-10-13 15:23:40,128 epoch 7 - iter 511/738 - loss 0.01695655 - time (sec): 36.40 - samples/sec: 3224.08 - lr: 0.000018 - momentum: 0.000000
2023-10-13 15:23:45,371 epoch 7 - iter 584/738 - loss 0.01651792 - time (sec): 41.65 - samples/sec: 3222.34 - lr: 0.000018 - momentum: 0.000000
2023-10-13 15:23:49,934 epoch 7 - iter 657/738 - loss 0.01655195 - time (sec): 46.21 - samples/sec: 3223.49 - lr: 0.000017 - momentum: 0.000000
2023-10-13 15:23:54,626 epoch 7 - iter 730/738 - loss 0.01607427 - time (sec): 50.90 - samples/sec: 3232.49 - lr: 0.000017 - momentum: 0.000000
2023-10-13 15:23:55,106 ----------------------------------------------------------------------------------------------------
2023-10-13 15:23:55,106 EPOCH 7 done: loss 0.0162 - lr: 0.000017
2023-10-13 15:24:06,529 DEV : loss 0.20719152688980103 - f1-score (micro avg)  0.8166
2023-10-13 15:24:06,573 saving best model
2023-10-13 15:24:07,354 ----------------------------------------------------------------------------------------------------
2023-10-13 15:24:12,377 epoch 8 - iter 73/738 - loss 0.00864185 - time (sec): 5.02 - samples/sec: 3218.84 - lr: 0.000016 - momentum: 0.000000
2023-10-13 15:24:17,396 epoch 8 - iter 146/738 - loss 0.01007836 - time (sec): 10.04 - samples/sec: 3180.73 - lr: 0.000016 - momentum: 0.000000
2023-10-13 15:24:22,749 epoch 8 - iter 219/738 - loss 0.01079097 - time (sec): 15.39 - samples/sec: 3223.12 - lr: 0.000015 - momentum: 0.000000
2023-10-13 15:24:27,812 epoch 8 - iter 292/738 - loss 0.01209528 - time (sec): 20.46 - samples/sec: 3195.75 - lr: 0.000015 - momentum: 0.000000
2023-10-13 15:24:32,510 epoch 8 - iter 365/738 - loss 0.01368334 - time (sec): 25.15 - samples/sec: 3219.63 - lr: 0.000014 - momentum: 0.000000
2023-10-13 15:24:37,678 epoch 8 - iter 438/738 - loss 0.01409645 - time (sec): 30.32 - samples/sec: 3206.98 - lr: 0.000013 - momentum: 0.000000
2023-10-13 15:24:42,309 epoch 8 - iter 511/738 - loss 0.01413601 - time (sec): 34.95 - samples/sec: 3220.08 - lr: 0.000013 - momentum: 0.000000
2023-10-13 15:24:47,889 epoch 8 - iter 584/738 - loss 0.01464820 - time (sec): 40.53 - samples/sec: 3230.23 - lr: 0.000012 - momentum: 0.000000
2023-10-13 15:24:52,581 epoch 8 - iter 657/738 - loss 0.01388140 - time (sec): 45.22 - samples/sec: 3247.02 - lr: 0.000012 - momentum: 0.000000
2023-10-13 15:24:57,881 epoch 8 - iter 730/738 - loss 0.01314649 - time (sec): 50.52 - samples/sec: 3263.37 - lr: 0.000011 - momentum: 0.000000
2023-10-13 15:24:58,335 ----------------------------------------------------------------------------------------------------
2023-10-13 15:24:58,335 EPOCH 8 done: loss 0.0131 - lr: 0.000011
2023-10-13 15:25:09,552 DEV : loss 0.22207467257976532 - f1-score (micro avg)  0.8239
2023-10-13 15:25:09,587 saving best model
2023-10-13 15:25:10,122 ----------------------------------------------------------------------------------------------------
2023-10-13 15:25:15,072 epoch 9 - iter 73/738 - loss 0.00622634 - time (sec): 4.95 - samples/sec: 3500.95 - lr: 0.000011 - momentum: 0.000000
2023-10-13 15:25:19,870 epoch 9 - iter 146/738 - loss 0.00678073 - time (sec): 9.75 - samples/sec: 3451.45 - lr: 0.000010 - momentum: 0.000000
2023-10-13 15:25:24,740 epoch 9 - iter 219/738 - loss 0.00883955 - time (sec): 14.62 - samples/sec: 3378.38 - lr: 0.000010 - momentum: 0.000000
2023-10-13 15:25:29,740 epoch 9 - iter 292/738 - loss 0.00808768 - time (sec): 19.62 - samples/sec: 3336.72 - lr: 0.000009 - momentum: 0.000000
2023-10-13 15:25:34,678 epoch 9 - iter 365/738 - loss 0.00752856 - time (sec): 24.55 - samples/sec: 3321.98 - lr: 0.000008 - momentum: 0.000000
2023-10-13 15:25:39,270 epoch 9 - iter 438/738 - loss 0.00836252 - time (sec): 29.15 - samples/sec: 3326.86 - lr: 0.000008 - momentum: 0.000000
2023-10-13 15:25:44,160 epoch 9 - iter 511/738 - loss 0.00810242 - time (sec): 34.04 - samples/sec: 3354.34 - lr: 0.000007 - momentum: 0.000000
2023-10-13 15:25:49,564 epoch 9 - iter 584/738 - loss 0.00765179 - time (sec): 39.44 - samples/sec: 3330.39 - lr: 0.000007 - momentum: 0.000000
2023-10-13 15:25:54,489 epoch 9 - iter 657/738 - loss 0.00751168 - time (sec): 44.36 - samples/sec: 3334.19 - lr: 0.000006 - momentum: 0.000000
2023-10-13 15:25:59,344 epoch 9 - iter 730/738 - loss 0.00780373 - time (sec): 49.22 - samples/sec: 3338.80 - lr: 0.000006 - momentum: 0.000000
2023-10-13 15:25:59,980 ----------------------------------------------------------------------------------------------------
2023-10-13 15:25:59,980 EPOCH 9 done: loss 0.0077 - lr: 0.000006
2023-10-13 15:26:11,819 DEV : loss 0.215680792927742 - f1-score (micro avg)  0.8301
2023-10-13 15:26:11,859 saving best model
2023-10-13 15:26:12,442 ----------------------------------------------------------------------------------------------------
2023-10-13 15:26:17,570 epoch 10 - iter 73/738 - loss 0.00455941 - time (sec): 5.12 - samples/sec: 3146.40 - lr: 0.000005 - momentum: 0.000000
2023-10-13 15:26:23,698 epoch 10 - iter 146/738 - loss 0.00464036 - time (sec): 11.25 - samples/sec: 3147.77 - lr: 0.000004 - momentum: 0.000000
2023-10-13 15:26:28,944 epoch 10 - iter 219/738 - loss 0.00476684 - time (sec): 16.50 - samples/sec: 3115.40 - lr: 0.000004 - momentum: 0.000000
2023-10-13 15:26:33,584 epoch 10 - iter 292/738 - loss 0.00428671 - time (sec): 21.14 - samples/sec: 3160.08 - lr: 0.000003 - momentum: 0.000000
2023-10-13 15:26:38,315 epoch 10 - iter 365/738 - loss 0.00478654 - time (sec): 25.87 - samples/sec: 3178.75 - lr: 0.000003 - momentum: 0.000000
2023-10-13 15:26:43,078 epoch 10 - iter 438/738 - loss 0.00517556 - time (sec): 30.63 - samples/sec: 3179.66 - lr: 0.000002 - momentum: 0.000000
2023-10-13 15:26:48,428 epoch 10 - iter 511/738 - loss 0.00501566 - time (sec): 35.98 - samples/sec: 3193.01 - lr: 0.000002 - momentum: 0.000000
2023-10-13 15:26:54,233 epoch 10 - iter 584/738 - loss 0.00534061 - time (sec): 41.79 - samples/sec: 3134.82 - lr: 0.000001 - momentum: 0.000000
2023-10-13 15:26:59,099 epoch 10 - iter 657/738 - loss 0.00508094 - time (sec): 46.65 - samples/sec: 3150.16 - lr: 0.000001 - momentum: 0.000000
2023-10-13 15:27:04,541 epoch 10 - iter 730/738 - loss 0.00505925 - time (sec): 52.10 - samples/sec: 3167.31 - lr: 0.000000 - momentum: 0.000000
2023-10-13 15:27:04,973 ----------------------------------------------------------------------------------------------------
2023-10-13 15:27:04,974 EPOCH 10 done: loss 0.0050 - lr: 0.000000
2023-10-13 15:27:16,194 DEV : loss 0.22398900985717773 - f1-score (micro avg)  0.8267
2023-10-13 15:27:16,617 ----------------------------------------------------------------------------------------------------
2023-10-13 15:27:16,619 Loading model from best epoch ...
2023-10-13 15:27:18,212 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
2023-10-13 15:27:24,197 
Results:
- F-score (micro) 0.7931
- F-score (macro) 0.6926
- Accuracy 0.6833

By class:
              precision    recall  f1-score   support

         loc     0.8555    0.8765    0.8659       858
        pers     0.7491    0.8007    0.7741       537
         org     0.5294    0.6136    0.5684       132
        time     0.4789    0.6296    0.5440        54
        prod     0.7167    0.7049    0.7107        61

   micro avg     0.7714    0.8161    0.7931      1642
   macro avg     0.6659    0.7251    0.6926      1642
weighted avg     0.7770    0.8161    0.7956      1642

2023-10-13 15:27:24,197 ----------------------------------------------------------------------------------------------------