2023-10-13 18:25:55,574 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:25:55,575 Model: "SequenceTagger( (embeddings): TransformerWordEmbeddings( (model): BertModel( (embeddings): BertEmbeddings( (word_embeddings): Embedding(32001, 768) (position_embeddings): Embedding(512, 768) (token_type_embeddings): Embedding(2, 768) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) (encoder): BertEncoder( (layer): ModuleList( (0-11): 12 x BertLayer( (attention): BertAttention( (self): BertSelfAttention( (query): Linear(in_features=768, out_features=768, bias=True) (key): Linear(in_features=768, out_features=768, bias=True) (value): Linear(in_features=768, out_features=768, bias=True) (dropout): Dropout(p=0.1, inplace=False) ) (output): BertSelfOutput( (dense): Linear(in_features=768, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) (intermediate): BertIntermediate( (dense): Linear(in_features=768, out_features=3072, bias=True) (intermediate_act_fn): GELUActivation() ) (output): BertOutput( (dense): Linear(in_features=3072, out_features=768, bias=True) (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) (dropout): Dropout(p=0.1, inplace=False) ) ) ) ) (pooler): BertPooler( (dense): Linear(in_features=768, out_features=768, bias=True) (activation): Tanh() ) ) ) (locked_dropout): LockedDropout(p=0.5) (linear): Linear(in_features=768, out_features=21, bias=True) (loss_function): CrossEntropyLoss() )" 2023-10-13 18:25:55,575 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:25:55,575 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences - NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator 2023-10-13 18:25:55,575 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:25:55,575 Train: 5901 sentences 2023-10-13 18:25:55,575 (train_with_dev=False, train_with_test=False) 2023-10-13 18:25:55,576 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:25:55,576 Training Params: 2023-10-13 18:25:55,576 - learning_rate: "3e-05" 2023-10-13 18:25:55,576 - mini_batch_size: "8" 2023-10-13 18:25:55,576 - max_epochs: "10" 2023-10-13 18:25:55,576 - shuffle: "True" 2023-10-13 18:25:55,576 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:25:55,576 Plugins: 2023-10-13 18:25:55,576 - LinearScheduler | warmup_fraction: '0.1' 2023-10-13 18:25:55,576 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:25:55,576 Final evaluation on model from best epoch (best-model.pt) 2023-10-13 18:25:55,576 - metric: "('micro avg', 'f1-score')" 2023-10-13 18:25:55,576 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:25:55,576 Computation: 2023-10-13 18:25:55,576 - compute on device: cuda:0 2023-10-13 18:25:55,576 - embedding storage: none 2023-10-13 18:25:55,576 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:25:55,576 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5" 2023-10-13 18:25:55,576 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:25:55,576 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:26:00,188 epoch 1 - iter 73/738 - loss 2.77948811 - time (sec): 4.61 - samples/sec: 3504.97 - lr: 0.000003 - momentum: 0.000000 2023-10-13 18:26:04,956 epoch 1 - iter 146/738 - loss 1.83651071 - time (sec): 9.38 - samples/sec: 3464.52 - lr: 0.000006 - momentum: 0.000000 2023-10-13 18:26:09,786 epoch 1 - iter 219/738 - loss 1.38880604 - time (sec): 14.21 - samples/sec: 3420.58 - lr: 0.000009 - momentum: 0.000000 2023-10-13 18:26:14,516 epoch 1 - iter 292/738 - loss 1.13857844 - time (sec): 18.94 - samples/sec: 3407.12 - lr: 0.000012 - momentum: 0.000000 2023-10-13 18:26:19,737 epoch 1 - iter 365/738 - loss 0.98269160 - time (sec): 24.16 - samples/sec: 3360.28 - lr: 0.000015 - momentum: 0.000000 2023-10-13 18:26:24,365 epoch 1 - iter 438/738 - loss 0.87412221 - time (sec): 28.79 - samples/sec: 3348.74 - lr: 0.000018 - momentum: 0.000000 2023-10-13 18:26:29,369 epoch 1 - iter 511/738 - loss 0.78141679 - time (sec): 33.79 - samples/sec: 3367.22 - lr: 0.000021 - momentum: 0.000000 2023-10-13 18:26:34,377 epoch 1 - iter 584/738 - loss 0.70772215 - time (sec): 38.80 - samples/sec: 3383.66 - lr: 0.000024 - momentum: 0.000000 2023-10-13 18:26:39,145 epoch 1 - iter 657/738 - loss 0.65339163 - time (sec): 43.57 - samples/sec: 3387.69 - lr: 0.000027 - momentum: 0.000000 2023-10-13 18:26:44,294 epoch 1 - iter 730/738 - loss 0.60764205 - time (sec): 48.72 - samples/sec: 3380.12 - lr: 0.000030 - momentum: 0.000000 2023-10-13 18:26:44,855 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:26:44,856 EPOCH 1 done: loss 0.6037 - lr: 0.000030 2023-10-13 18:26:51,028 DEV : loss 0.15163348615169525 - f1-score (micro avg) 0.6833 2023-10-13 18:26:51,056 saving best model 2023-10-13 18:26:51,480 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:26:56,596 epoch 2 - iter 73/738 - loss 0.14905787 - time (sec): 5.11 - samples/sec: 3263.37 - lr: 0.000030 - momentum: 0.000000 2023-10-13 18:27:01,383 epoch 2 - iter 146/738 - loss 0.14670637 - time (sec): 9.90 - samples/sec: 3334.54 - lr: 0.000029 - momentum: 0.000000 2023-10-13 18:27:06,404 epoch 2 - iter 219/738 - loss 0.14929708 - time (sec): 14.92 - samples/sec: 3331.31 - lr: 0.000029 - momentum: 0.000000 2023-10-13 18:27:10,955 epoch 2 - iter 292/738 - loss 0.14176362 - time (sec): 19.47 - samples/sec: 3345.22 - lr: 0.000029 - momentum: 0.000000 2023-10-13 18:27:16,010 epoch 2 - iter 365/738 - loss 0.13682994 - time (sec): 24.53 - samples/sec: 3390.21 - lr: 0.000028 - momentum: 0.000000 2023-10-13 18:27:22,282 epoch 2 - iter 438/738 - loss 0.13774552 - time (sec): 30.80 - samples/sec: 3372.32 - lr: 0.000028 - momentum: 0.000000 2023-10-13 18:27:26,751 epoch 2 - iter 511/738 - loss 0.13433078 - time (sec): 35.27 - samples/sec: 3375.37 - lr: 0.000028 - momentum: 0.000000 2023-10-13 18:27:31,778 epoch 2 - iter 584/738 - loss 0.13450948 - time (sec): 40.30 - samples/sec: 3373.81 - lr: 0.000027 - momentum: 0.000000 2023-10-13 18:27:35,982 epoch 2 - iter 657/738 - loss 0.13257424 - time (sec): 44.50 - samples/sec: 3378.23 - lr: 0.000027 - momentum: 0.000000 2023-10-13 18:27:40,535 epoch 2 - iter 730/738 - loss 0.13177134 - time (sec): 49.05 - samples/sec: 3363.30 - lr: 0.000027 - momentum: 0.000000 2023-10-13 18:27:40,955 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:27:40,956 EPOCH 2 done: loss 0.1311 - lr: 0.000027 2023-10-13 18:27:52,212 DEV : loss 0.11227148026227951 - f1-score (micro avg) 0.792 2023-10-13 18:27:52,241 saving best model 2023-10-13 18:27:52,725 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:27:57,928 epoch 3 - iter 73/738 - loss 0.07307088 - time (sec): 5.20 - samples/sec: 3558.65 - lr: 0.000026 - momentum: 0.000000 2023-10-13 18:28:03,006 epoch 3 - iter 146/738 - loss 0.06721425 - time (sec): 10.27 - samples/sec: 3411.70 - lr: 0.000026 - momentum: 0.000000 2023-10-13 18:28:07,946 epoch 3 - iter 219/738 - loss 0.07015625 - time (sec): 15.21 - samples/sec: 3402.24 - lr: 0.000026 - momentum: 0.000000 2023-10-13 18:28:13,475 epoch 3 - iter 292/738 - loss 0.07577362 - time (sec): 20.74 - samples/sec: 3372.37 - lr: 0.000025 - momentum: 0.000000 2023-10-13 18:28:18,038 epoch 3 - iter 365/738 - loss 0.07658825 - time (sec): 25.31 - samples/sec: 3364.70 - lr: 0.000025 - momentum: 0.000000 2023-10-13 18:28:22,940 epoch 3 - iter 438/738 - loss 0.07349264 - time (sec): 30.21 - samples/sec: 3352.76 - lr: 0.000025 - momentum: 0.000000 2023-10-13 18:28:27,523 epoch 3 - iter 511/738 - loss 0.07289690 - time (sec): 34.79 - samples/sec: 3357.71 - lr: 0.000024 - momentum: 0.000000 2023-10-13 18:28:32,227 epoch 3 - iter 584/738 - loss 0.07223721 - time (sec): 39.49 - samples/sec: 3361.46 - lr: 0.000024 - momentum: 0.000000 2023-10-13 18:28:37,075 epoch 3 - iter 657/738 - loss 0.07202171 - time (sec): 44.34 - samples/sec: 3354.44 - lr: 0.000024 - momentum: 0.000000 2023-10-13 18:28:41,868 epoch 3 - iter 730/738 - loss 0.07214547 - time (sec): 49.14 - samples/sec: 3356.10 - lr: 0.000023 - momentum: 0.000000 2023-10-13 18:28:42,345 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:28:42,345 EPOCH 3 done: loss 0.0726 - lr: 0.000023 2023-10-13 18:28:53,535 DEV : loss 0.11804373562335968 - f1-score (micro avg) 0.8005 2023-10-13 18:28:53,563 saving best model 2023-10-13 18:28:54,108 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:28:59,136 epoch 4 - iter 73/738 - loss 0.04640357 - time (sec): 5.02 - samples/sec: 3178.15 - lr: 0.000023 - momentum: 0.000000 2023-10-13 18:29:04,912 epoch 4 - iter 146/738 - loss 0.05188936 - time (sec): 10.80 - samples/sec: 3286.27 - lr: 0.000023 - momentum: 0.000000 2023-10-13 18:29:10,063 epoch 4 - iter 219/738 - loss 0.04957858 - time (sec): 15.95 - samples/sec: 3226.45 - lr: 0.000022 - momentum: 0.000000 2023-10-13 18:29:14,644 epoch 4 - iter 292/738 - loss 0.05013571 - time (sec): 20.53 - samples/sec: 3217.01 - lr: 0.000022 - momentum: 0.000000 2023-10-13 18:29:19,570 epoch 4 - iter 365/738 - loss 0.04848137 - time (sec): 25.46 - samples/sec: 3251.80 - lr: 0.000022 - momentum: 0.000000 2023-10-13 18:29:24,227 epoch 4 - iter 438/738 - loss 0.04768082 - time (sec): 30.11 - samples/sec: 3283.31 - lr: 0.000021 - momentum: 0.000000 2023-10-13 18:29:28,806 epoch 4 - iter 511/738 - loss 0.04744479 - time (sec): 34.69 - samples/sec: 3284.39 - lr: 0.000021 - momentum: 0.000000 2023-10-13 18:29:33,378 epoch 4 - iter 584/738 - loss 0.04764204 - time (sec): 39.27 - samples/sec: 3303.23 - lr: 0.000021 - momentum: 0.000000 2023-10-13 18:29:38,231 epoch 4 - iter 657/738 - loss 0.04732965 - time (sec): 44.12 - samples/sec: 3300.01 - lr: 0.000020 - momentum: 0.000000 2023-10-13 18:29:43,735 epoch 4 - iter 730/738 - loss 0.04657406 - time (sec): 49.62 - samples/sec: 3319.62 - lr: 0.000020 - momentum: 0.000000 2023-10-13 18:29:44,198 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:29:44,198 EPOCH 4 done: loss 0.0466 - lr: 0.000020 2023-10-13 18:29:55,341 DEV : loss 0.14324556291103363 - f1-score (micro avg) 0.8153 2023-10-13 18:29:55,370 saving best model 2023-10-13 18:29:55,914 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:30:00,745 epoch 5 - iter 73/738 - loss 0.03463417 - time (sec): 4.83 - samples/sec: 3466.69 - lr: 0.000020 - momentum: 0.000000 2023-10-13 18:30:05,323 epoch 5 - iter 146/738 - loss 0.03424645 - time (sec): 9.40 - samples/sec: 3330.81 - lr: 0.000019 - momentum: 0.000000 2023-10-13 18:30:10,542 epoch 5 - iter 219/738 - loss 0.03250383 - time (sec): 14.62 - samples/sec: 3279.94 - lr: 0.000019 - momentum: 0.000000 2023-10-13 18:30:15,573 epoch 5 - iter 292/738 - loss 0.03238949 - time (sec): 19.65 - samples/sec: 3278.44 - lr: 0.000019 - momentum: 0.000000 2023-10-13 18:30:20,752 epoch 5 - iter 365/738 - loss 0.03263209 - time (sec): 24.83 - samples/sec: 3282.40 - lr: 0.000018 - momentum: 0.000000 2023-10-13 18:30:25,879 epoch 5 - iter 438/738 - loss 0.03210855 - time (sec): 29.96 - samples/sec: 3280.02 - lr: 0.000018 - momentum: 0.000000 2023-10-13 18:30:30,870 epoch 5 - iter 511/738 - loss 0.03349194 - time (sec): 34.95 - samples/sec: 3286.12 - lr: 0.000018 - momentum: 0.000000 2023-10-13 18:30:36,087 epoch 5 - iter 584/738 - loss 0.03354639 - time (sec): 40.17 - samples/sec: 3282.79 - lr: 0.000017 - momentum: 0.000000 2023-10-13 18:30:41,586 epoch 5 - iter 657/738 - loss 0.03422851 - time (sec): 45.67 - samples/sec: 3256.83 - lr: 0.000017 - momentum: 0.000000 2023-10-13 18:30:46,158 epoch 5 - iter 730/738 - loss 0.03467585 - time (sec): 50.24 - samples/sec: 3276.48 - lr: 0.000017 - momentum: 0.000000 2023-10-13 18:30:46,772 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:30:46,773 EPOCH 5 done: loss 0.0344 - lr: 0.000017 2023-10-13 18:30:57,925 DEV : loss 0.16191978752613068 - f1-score (micro avg) 0.8316 2023-10-13 18:30:57,954 saving best model 2023-10-13 18:30:58,448 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:31:03,446 epoch 6 - iter 73/738 - loss 0.03187475 - time (sec): 5.00 - samples/sec: 3395.25 - lr: 0.000016 - momentum: 0.000000 2023-10-13 18:31:08,103 epoch 6 - iter 146/738 - loss 0.02607637 - time (sec): 9.65 - samples/sec: 3340.93 - lr: 0.000016 - momentum: 0.000000 2023-10-13 18:31:12,977 epoch 6 - iter 219/738 - loss 0.02584962 - time (sec): 14.53 - samples/sec: 3330.61 - lr: 0.000016 - momentum: 0.000000 2023-10-13 18:31:17,890 epoch 6 - iter 292/738 - loss 0.02764999 - time (sec): 19.44 - samples/sec: 3322.47 - lr: 0.000015 - momentum: 0.000000 2023-10-13 18:31:22,652 epoch 6 - iter 365/738 - loss 0.02678067 - time (sec): 24.20 - samples/sec: 3311.91 - lr: 0.000015 - momentum: 0.000000 2023-10-13 18:31:27,144 epoch 6 - iter 438/738 - loss 0.02654707 - time (sec): 28.69 - samples/sec: 3322.25 - lr: 0.000015 - momentum: 0.000000 2023-10-13 18:31:32,359 epoch 6 - iter 511/738 - loss 0.02516894 - time (sec): 33.91 - samples/sec: 3334.53 - lr: 0.000014 - momentum: 0.000000 2023-10-13 18:31:37,209 epoch 6 - iter 584/738 - loss 0.02524705 - time (sec): 38.76 - samples/sec: 3337.29 - lr: 0.000014 - momentum: 0.000000 2023-10-13 18:31:42,168 epoch 6 - iter 657/738 - loss 0.02616650 - time (sec): 43.72 - samples/sec: 3335.83 - lr: 0.000014 - momentum: 0.000000 2023-10-13 18:31:47,146 epoch 6 - iter 730/738 - loss 0.02554515 - time (sec): 48.70 - samples/sec: 3369.83 - lr: 0.000013 - momentum: 0.000000 2023-10-13 18:31:47,871 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:31:47,871 EPOCH 6 done: loss 0.0256 - lr: 0.000013 2023-10-13 18:31:59,141 DEV : loss 0.18813824653625488 - f1-score (micro avg) 0.8172 2023-10-13 18:31:59,170 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:32:04,119 epoch 7 - iter 73/738 - loss 0.01945020 - time (sec): 4.95 - samples/sec: 3505.84 - lr: 0.000013 - momentum: 0.000000 2023-10-13 18:32:09,953 epoch 7 - iter 146/738 - loss 0.02190146 - time (sec): 10.78 - samples/sec: 3316.79 - lr: 0.000013 - momentum: 0.000000 2023-10-13 18:32:15,106 epoch 7 - iter 219/738 - loss 0.01858043 - time (sec): 15.93 - samples/sec: 3324.70 - lr: 0.000012 - momentum: 0.000000 2023-10-13 18:32:20,277 epoch 7 - iter 292/738 - loss 0.01910198 - time (sec): 21.11 - samples/sec: 3364.95 - lr: 0.000012 - momentum: 0.000000 2023-10-13 18:32:24,500 epoch 7 - iter 365/738 - loss 0.01972075 - time (sec): 25.33 - samples/sec: 3391.31 - lr: 0.000012 - momentum: 0.000000 2023-10-13 18:32:29,452 epoch 7 - iter 438/738 - loss 0.02062901 - time (sec): 30.28 - samples/sec: 3382.30 - lr: 0.000011 - momentum: 0.000000 2023-10-13 18:32:34,183 epoch 7 - iter 511/738 - loss 0.01984974 - time (sec): 35.01 - samples/sec: 3373.91 - lr: 0.000011 - momentum: 0.000000 2023-10-13 18:32:38,775 epoch 7 - iter 584/738 - loss 0.01906639 - time (sec): 39.60 - samples/sec: 3372.83 - lr: 0.000011 - momentum: 0.000000 2023-10-13 18:32:43,455 epoch 7 - iter 657/738 - loss 0.01891734 - time (sec): 44.28 - samples/sec: 3373.12 - lr: 0.000010 - momentum: 0.000000 2023-10-13 18:32:48,038 epoch 7 - iter 730/738 - loss 0.01895225 - time (sec): 48.87 - samples/sec: 3368.29 - lr: 0.000010 - momentum: 0.000000 2023-10-13 18:32:48,534 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:32:48,534 EPOCH 7 done: loss 0.0192 - lr: 0.000010 2023-10-13 18:32:59,738 DEV : loss 0.21069413423538208 - f1-score (micro avg) 0.8205 2023-10-13 18:32:59,768 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:33:04,738 epoch 8 - iter 73/738 - loss 0.01208919 - time (sec): 4.97 - samples/sec: 3546.99 - lr: 0.000010 - momentum: 0.000000 2023-10-13 18:33:09,349 epoch 8 - iter 146/738 - loss 0.01011562 - time (sec): 9.58 - samples/sec: 3428.49 - lr: 0.000009 - momentum: 0.000000 2023-10-13 18:33:14,711 epoch 8 - iter 219/738 - loss 0.01197427 - time (sec): 14.94 - samples/sec: 3453.24 - lr: 0.000009 - momentum: 0.000000 2023-10-13 18:33:19,729 epoch 8 - iter 292/738 - loss 0.01073791 - time (sec): 19.96 - samples/sec: 3356.40 - lr: 0.000009 - momentum: 0.000000 2023-10-13 18:33:24,003 epoch 8 - iter 365/738 - loss 0.01273368 - time (sec): 24.23 - samples/sec: 3359.97 - lr: 0.000008 - momentum: 0.000000 2023-10-13 18:33:28,829 epoch 8 - iter 438/738 - loss 0.01246504 - time (sec): 29.06 - samples/sec: 3347.32 - lr: 0.000008 - momentum: 0.000000 2023-10-13 18:33:33,827 epoch 8 - iter 511/738 - loss 0.01250396 - time (sec): 34.06 - samples/sec: 3368.55 - lr: 0.000008 - momentum: 0.000000 2023-10-13 18:33:38,771 epoch 8 - iter 584/738 - loss 0.01223467 - time (sec): 39.00 - samples/sec: 3356.88 - lr: 0.000007 - momentum: 0.000000 2023-10-13 18:33:43,688 epoch 8 - iter 657/738 - loss 0.01262949 - time (sec): 43.92 - samples/sec: 3350.21 - lr: 0.000007 - momentum: 0.000000 2023-10-13 18:33:48,706 epoch 8 - iter 730/738 - loss 0.01263386 - time (sec): 48.94 - samples/sec: 3352.69 - lr: 0.000007 - momentum: 0.000000 2023-10-13 18:33:49,394 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:33:49,395 EPOCH 8 done: loss 0.0125 - lr: 0.000007 2023-10-13 18:34:00,541 DEV : loss 0.1914064884185791 - f1-score (micro avg) 0.8327 2023-10-13 18:34:00,571 saving best model 2023-10-13 18:34:01,118 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:34:05,943 epoch 9 - iter 73/738 - loss 0.01636345 - time (sec): 4.82 - samples/sec: 3310.78 - lr: 0.000006 - momentum: 0.000000 2023-10-13 18:34:10,703 epoch 9 - iter 146/738 - loss 0.01343032 - time (sec): 9.58 - samples/sec: 3354.67 - lr: 0.000006 - momentum: 0.000000 2023-10-13 18:34:15,064 epoch 9 - iter 219/738 - loss 0.01024467 - time (sec): 13.94 - samples/sec: 3361.07 - lr: 0.000006 - momentum: 0.000000 2023-10-13 18:34:20,316 epoch 9 - iter 292/738 - loss 0.01040151 - time (sec): 19.20 - samples/sec: 3322.59 - lr: 0.000005 - momentum: 0.000000 2023-10-13 18:34:25,011 epoch 9 - iter 365/738 - loss 0.00980650 - time (sec): 23.89 - samples/sec: 3318.50 - lr: 0.000005 - momentum: 0.000000 2023-10-13 18:34:29,967 epoch 9 - iter 438/738 - loss 0.00914193 - time (sec): 28.85 - samples/sec: 3308.67 - lr: 0.000005 - momentum: 0.000000 2023-10-13 18:34:35,040 epoch 9 - iter 511/738 - loss 0.00900502 - time (sec): 33.92 - samples/sec: 3333.78 - lr: 0.000004 - momentum: 0.000000 2023-10-13 18:34:40,548 epoch 9 - iter 584/738 - loss 0.00995733 - time (sec): 39.43 - samples/sec: 3334.23 - lr: 0.000004 - momentum: 0.000000 2023-10-13 18:34:45,124 epoch 9 - iter 657/738 - loss 0.00904693 - time (sec): 44.00 - samples/sec: 3336.14 - lr: 0.000004 - momentum: 0.000000 2023-10-13 18:34:49,897 epoch 9 - iter 730/738 - loss 0.00901017 - time (sec): 48.78 - samples/sec: 3355.24 - lr: 0.000003 - momentum: 0.000000 2023-10-13 18:34:50,765 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:34:50,765 EPOCH 9 done: loss 0.0089 - lr: 0.000003 2023-10-13 18:35:02,006 DEV : loss 0.20760603249073029 - f1-score (micro avg) 0.8264 2023-10-13 18:35:02,036 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:35:06,611 epoch 10 - iter 73/738 - loss 0.00505717 - time (sec): 4.57 - samples/sec: 3318.85 - lr: 0.000003 - momentum: 0.000000 2023-10-13 18:35:11,830 epoch 10 - iter 146/738 - loss 0.00742873 - time (sec): 9.79 - samples/sec: 3315.90 - lr: 0.000003 - momentum: 0.000000 2023-10-13 18:35:17,652 epoch 10 - iter 219/738 - loss 0.00650006 - time (sec): 15.62 - samples/sec: 3154.32 - lr: 0.000002 - momentum: 0.000000 2023-10-13 18:35:22,973 epoch 10 - iter 292/738 - loss 0.00677815 - time (sec): 20.94 - samples/sec: 3170.26 - lr: 0.000002 - momentum: 0.000000 2023-10-13 18:35:28,293 epoch 10 - iter 365/738 - loss 0.00621081 - time (sec): 26.26 - samples/sec: 3208.44 - lr: 0.000002 - momentum: 0.000000 2023-10-13 18:35:32,788 epoch 10 - iter 438/738 - loss 0.00657852 - time (sec): 30.75 - samples/sec: 3245.23 - lr: 0.000001 - momentum: 0.000000 2023-10-13 18:35:37,205 epoch 10 - iter 511/738 - loss 0.00821402 - time (sec): 35.17 - samples/sec: 3273.58 - lr: 0.000001 - momentum: 0.000000 2023-10-13 18:35:42,271 epoch 10 - iter 584/738 - loss 0.00795187 - time (sec): 40.23 - samples/sec: 3268.92 - lr: 0.000001 - momentum: 0.000000 2023-10-13 18:35:47,325 epoch 10 - iter 657/738 - loss 0.00749875 - time (sec): 45.29 - samples/sec: 3296.73 - lr: 0.000000 - momentum: 0.000000 2023-10-13 18:35:51,858 epoch 10 - iter 730/738 - loss 0.00725227 - time (sec): 49.82 - samples/sec: 3308.48 - lr: 0.000000 - momentum: 0.000000 2023-10-13 18:35:52,320 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:35:52,320 EPOCH 10 done: loss 0.0072 - lr: 0.000000 2023-10-13 18:36:03,499 DEV : loss 0.20923016965389252 - f1-score (micro avg) 0.8323 2023-10-13 18:36:03,920 ---------------------------------------------------------------------------------------------------- 2023-10-13 18:36:03,922 Loading model from best epoch ... 2023-10-13 18:36:05,272 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod 2023-10-13 18:36:11,234 Results: - F-score (micro) 0.8013 - F-score (macro) 0.7115 - Accuracy 0.6915 By class: precision recall f1-score support loc 0.8692 0.8671 0.8681 858 pers 0.7301 0.8212 0.7730 537 org 0.6170 0.6591 0.6374 132 prod 0.7119 0.6885 0.7000 61 time 0.5500 0.6111 0.5789 54 micro avg 0.7831 0.8203 0.8013 1642 macro avg 0.6956 0.7294 0.7115 1642 weighted avg 0.7871 0.8203 0.8027 1642 2023-10-13 18:36:11,234 ----------------------------------------------------------------------------------------------------