Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- test.tsv +0 -0
- training.log +243 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62312c273b53722326c31a548ac55aab9d260146d05167473aefab77793b8570
|
3 |
+
size 443335879
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 18:26:51 0.0000 0.6037 0.1516 0.6483 0.7222 0.6833 0.5504
|
3 |
+
2 18:27:52 0.0000 0.1311 0.1123 0.7531 0.8351 0.7920 0.6816
|
4 |
+
3 18:28:53 0.0000 0.0726 0.1180 0.7924 0.8087 0.8005 0.6932
|
5 |
+
4 18:29:55 0.0000 0.0466 0.1432 0.8055 0.8253 0.8153 0.7127
|
6 |
+
5 18:30:57 0.0000 0.0344 0.1619 0.8276 0.8356 0.8316 0.7376
|
7 |
+
6 18:31:59 0.0000 0.0256 0.1881 0.8017 0.8333 0.8172 0.7182
|
8 |
+
7 18:32:59 0.0000 0.0192 0.2107 0.8125 0.8288 0.8205 0.7239
|
9 |
+
8 18:34:00 0.0000 0.0125 0.1914 0.8178 0.8482 0.8327 0.7379
|
10 |
+
9 18:35:02 0.0000 0.0089 0.2076 0.8109 0.8425 0.8264 0.7344
|
11 |
+
10 18:36:03 0.0000 0.0072 0.2092 0.8234 0.8414 0.8323 0.7412
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-13 18:25:55,574 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-13 18:25:55,575 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 768)
|
7 |
+
(position_embeddings): Embedding(512, 768)
|
8 |
+
(token_type_embeddings): Embedding(2, 768)
|
9 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-11): 12 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
18 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
19 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=768, out_features=21, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-13 18:25:55,575 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-13 18:25:55,575 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator
|
53 |
+
2023-10-13 18:25:55,575 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-13 18:25:55,575 Train: 5901 sentences
|
55 |
+
2023-10-13 18:25:55,575 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-13 18:25:55,576 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-13 18:25:55,576 Training Params:
|
58 |
+
2023-10-13 18:25:55,576 - learning_rate: "3e-05"
|
59 |
+
2023-10-13 18:25:55,576 - mini_batch_size: "8"
|
60 |
+
2023-10-13 18:25:55,576 - max_epochs: "10"
|
61 |
+
2023-10-13 18:25:55,576 - shuffle: "True"
|
62 |
+
2023-10-13 18:25:55,576 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-13 18:25:55,576 Plugins:
|
64 |
+
2023-10-13 18:25:55,576 - LinearScheduler | warmup_fraction: '0.1'
|
65 |
+
2023-10-13 18:25:55,576 ----------------------------------------------------------------------------------------------------
|
66 |
+
2023-10-13 18:25:55,576 Final evaluation on model from best epoch (best-model.pt)
|
67 |
+
2023-10-13 18:25:55,576 - metric: "('micro avg', 'f1-score')"
|
68 |
+
2023-10-13 18:25:55,576 ----------------------------------------------------------------------------------------------------
|
69 |
+
2023-10-13 18:25:55,576 Computation:
|
70 |
+
2023-10-13 18:25:55,576 - compute on device: cuda:0
|
71 |
+
2023-10-13 18:25:55,576 - embedding storage: none
|
72 |
+
2023-10-13 18:25:55,576 ----------------------------------------------------------------------------------------------------
|
73 |
+
2023-10-13 18:25:55,576 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5"
|
74 |
+
2023-10-13 18:25:55,576 ----------------------------------------------------------------------------------------------------
|
75 |
+
2023-10-13 18:25:55,576 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-13 18:26:00,188 epoch 1 - iter 73/738 - loss 2.77948811 - time (sec): 4.61 - samples/sec: 3504.97 - lr: 0.000003 - momentum: 0.000000
|
77 |
+
2023-10-13 18:26:04,956 epoch 1 - iter 146/738 - loss 1.83651071 - time (sec): 9.38 - samples/sec: 3464.52 - lr: 0.000006 - momentum: 0.000000
|
78 |
+
2023-10-13 18:26:09,786 epoch 1 - iter 219/738 - loss 1.38880604 - time (sec): 14.21 - samples/sec: 3420.58 - lr: 0.000009 - momentum: 0.000000
|
79 |
+
2023-10-13 18:26:14,516 epoch 1 - iter 292/738 - loss 1.13857844 - time (sec): 18.94 - samples/sec: 3407.12 - lr: 0.000012 - momentum: 0.000000
|
80 |
+
2023-10-13 18:26:19,737 epoch 1 - iter 365/738 - loss 0.98269160 - time (sec): 24.16 - samples/sec: 3360.28 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-13 18:26:24,365 epoch 1 - iter 438/738 - loss 0.87412221 - time (sec): 28.79 - samples/sec: 3348.74 - lr: 0.000018 - momentum: 0.000000
|
82 |
+
2023-10-13 18:26:29,369 epoch 1 - iter 511/738 - loss 0.78141679 - time (sec): 33.79 - samples/sec: 3367.22 - lr: 0.000021 - momentum: 0.000000
|
83 |
+
2023-10-13 18:26:34,377 epoch 1 - iter 584/738 - loss 0.70772215 - time (sec): 38.80 - samples/sec: 3383.66 - lr: 0.000024 - momentum: 0.000000
|
84 |
+
2023-10-13 18:26:39,145 epoch 1 - iter 657/738 - loss 0.65339163 - time (sec): 43.57 - samples/sec: 3387.69 - lr: 0.000027 - momentum: 0.000000
|
85 |
+
2023-10-13 18:26:44,294 epoch 1 - iter 730/738 - loss 0.60764205 - time (sec): 48.72 - samples/sec: 3380.12 - lr: 0.000030 - momentum: 0.000000
|
86 |
+
2023-10-13 18:26:44,855 ----------------------------------------------------------------------------------------------------
|
87 |
+
2023-10-13 18:26:44,856 EPOCH 1 done: loss 0.6037 - lr: 0.000030
|
88 |
+
2023-10-13 18:26:51,028 DEV : loss 0.15163348615169525 - f1-score (micro avg) 0.6833
|
89 |
+
2023-10-13 18:26:51,056 saving best model
|
90 |
+
2023-10-13 18:26:51,480 ----------------------------------------------------------------------------------------------------
|
91 |
+
2023-10-13 18:26:56,596 epoch 2 - iter 73/738 - loss 0.14905787 - time (sec): 5.11 - samples/sec: 3263.37 - lr: 0.000030 - momentum: 0.000000
|
92 |
+
2023-10-13 18:27:01,383 epoch 2 - iter 146/738 - loss 0.14670637 - time (sec): 9.90 - samples/sec: 3334.54 - lr: 0.000029 - momentum: 0.000000
|
93 |
+
2023-10-13 18:27:06,404 epoch 2 - iter 219/738 - loss 0.14929708 - time (sec): 14.92 - samples/sec: 3331.31 - lr: 0.000029 - momentum: 0.000000
|
94 |
+
2023-10-13 18:27:10,955 epoch 2 - iter 292/738 - loss 0.14176362 - time (sec): 19.47 - samples/sec: 3345.22 - lr: 0.000029 - momentum: 0.000000
|
95 |
+
2023-10-13 18:27:16,010 epoch 2 - iter 365/738 - loss 0.13682994 - time (sec): 24.53 - samples/sec: 3390.21 - lr: 0.000028 - momentum: 0.000000
|
96 |
+
2023-10-13 18:27:22,282 epoch 2 - iter 438/738 - loss 0.13774552 - time (sec): 30.80 - samples/sec: 3372.32 - lr: 0.000028 - momentum: 0.000000
|
97 |
+
2023-10-13 18:27:26,751 epoch 2 - iter 511/738 - loss 0.13433078 - time (sec): 35.27 - samples/sec: 3375.37 - lr: 0.000028 - momentum: 0.000000
|
98 |
+
2023-10-13 18:27:31,778 epoch 2 - iter 584/738 - loss 0.13450948 - time (sec): 40.30 - samples/sec: 3373.81 - lr: 0.000027 - momentum: 0.000000
|
99 |
+
2023-10-13 18:27:35,982 epoch 2 - iter 657/738 - loss 0.13257424 - time (sec): 44.50 - samples/sec: 3378.23 - lr: 0.000027 - momentum: 0.000000
|
100 |
+
2023-10-13 18:27:40,535 epoch 2 - iter 730/738 - loss 0.13177134 - time (sec): 49.05 - samples/sec: 3363.30 - lr: 0.000027 - momentum: 0.000000
|
101 |
+
2023-10-13 18:27:40,955 ----------------------------------------------------------------------------------------------------
|
102 |
+
2023-10-13 18:27:40,956 EPOCH 2 done: loss 0.1311 - lr: 0.000027
|
103 |
+
2023-10-13 18:27:52,212 DEV : loss 0.11227148026227951 - f1-score (micro avg) 0.792
|
104 |
+
2023-10-13 18:27:52,241 saving best model
|
105 |
+
2023-10-13 18:27:52,725 ----------------------------------------------------------------------------------------------------
|
106 |
+
2023-10-13 18:27:57,928 epoch 3 - iter 73/738 - loss 0.07307088 - time (sec): 5.20 - samples/sec: 3558.65 - lr: 0.000026 - momentum: 0.000000
|
107 |
+
2023-10-13 18:28:03,006 epoch 3 - iter 146/738 - loss 0.06721425 - time (sec): 10.27 - samples/sec: 3411.70 - lr: 0.000026 - momentum: 0.000000
|
108 |
+
2023-10-13 18:28:07,946 epoch 3 - iter 219/738 - loss 0.07015625 - time (sec): 15.21 - samples/sec: 3402.24 - lr: 0.000026 - momentum: 0.000000
|
109 |
+
2023-10-13 18:28:13,475 epoch 3 - iter 292/738 - loss 0.07577362 - time (sec): 20.74 - samples/sec: 3372.37 - lr: 0.000025 - momentum: 0.000000
|
110 |
+
2023-10-13 18:28:18,038 epoch 3 - iter 365/738 - loss 0.07658825 - time (sec): 25.31 - samples/sec: 3364.70 - lr: 0.000025 - momentum: 0.000000
|
111 |
+
2023-10-13 18:28:22,940 epoch 3 - iter 438/738 - loss 0.07349264 - time (sec): 30.21 - samples/sec: 3352.76 - lr: 0.000025 - momentum: 0.000000
|
112 |
+
2023-10-13 18:28:27,523 epoch 3 - iter 511/738 - loss 0.07289690 - time (sec): 34.79 - samples/sec: 3357.71 - lr: 0.000024 - momentum: 0.000000
|
113 |
+
2023-10-13 18:28:32,227 epoch 3 - iter 584/738 - loss 0.07223721 - time (sec): 39.49 - samples/sec: 3361.46 - lr: 0.000024 - momentum: 0.000000
|
114 |
+
2023-10-13 18:28:37,075 epoch 3 - iter 657/738 - loss 0.07202171 - time (sec): 44.34 - samples/sec: 3354.44 - lr: 0.000024 - momentum: 0.000000
|
115 |
+
2023-10-13 18:28:41,868 epoch 3 - iter 730/738 - loss 0.07214547 - time (sec): 49.14 - samples/sec: 3356.10 - lr: 0.000023 - momentum: 0.000000
|
116 |
+
2023-10-13 18:28:42,345 ----------------------------------------------------------------------------------------------------
|
117 |
+
2023-10-13 18:28:42,345 EPOCH 3 done: loss 0.0726 - lr: 0.000023
|
118 |
+
2023-10-13 18:28:53,535 DEV : loss 0.11804373562335968 - f1-score (micro avg) 0.8005
|
119 |
+
2023-10-13 18:28:53,563 saving best model
|
120 |
+
2023-10-13 18:28:54,108 ----------------------------------------------------------------------------------------------------
|
121 |
+
2023-10-13 18:28:59,136 epoch 4 - iter 73/738 - loss 0.04640357 - time (sec): 5.02 - samples/sec: 3178.15 - lr: 0.000023 - momentum: 0.000000
|
122 |
+
2023-10-13 18:29:04,912 epoch 4 - iter 146/738 - loss 0.05188936 - time (sec): 10.80 - samples/sec: 3286.27 - lr: 0.000023 - momentum: 0.000000
|
123 |
+
2023-10-13 18:29:10,063 epoch 4 - iter 219/738 - loss 0.04957858 - time (sec): 15.95 - samples/sec: 3226.45 - lr: 0.000022 - momentum: 0.000000
|
124 |
+
2023-10-13 18:29:14,644 epoch 4 - iter 292/738 - loss 0.05013571 - time (sec): 20.53 - samples/sec: 3217.01 - lr: 0.000022 - momentum: 0.000000
|
125 |
+
2023-10-13 18:29:19,570 epoch 4 - iter 365/738 - loss 0.04848137 - time (sec): 25.46 - samples/sec: 3251.80 - lr: 0.000022 - momentum: 0.000000
|
126 |
+
2023-10-13 18:29:24,227 epoch 4 - iter 438/738 - loss 0.04768082 - time (sec): 30.11 - samples/sec: 3283.31 - lr: 0.000021 - momentum: 0.000000
|
127 |
+
2023-10-13 18:29:28,806 epoch 4 - iter 511/738 - loss 0.04744479 - time (sec): 34.69 - samples/sec: 3284.39 - lr: 0.000021 - momentum: 0.000000
|
128 |
+
2023-10-13 18:29:33,378 epoch 4 - iter 584/738 - loss 0.04764204 - time (sec): 39.27 - samples/sec: 3303.23 - lr: 0.000021 - momentum: 0.000000
|
129 |
+
2023-10-13 18:29:38,231 epoch 4 - iter 657/738 - loss 0.04732965 - time (sec): 44.12 - samples/sec: 3300.01 - lr: 0.000020 - momentum: 0.000000
|
130 |
+
2023-10-13 18:29:43,735 epoch 4 - iter 730/738 - loss 0.04657406 - time (sec): 49.62 - samples/sec: 3319.62 - lr: 0.000020 - momentum: 0.000000
|
131 |
+
2023-10-13 18:29:44,198 ----------------------------------------------------------------------------------------------------
|
132 |
+
2023-10-13 18:29:44,198 EPOCH 4 done: loss 0.0466 - lr: 0.000020
|
133 |
+
2023-10-13 18:29:55,341 DEV : loss 0.14324556291103363 - f1-score (micro avg) 0.8153
|
134 |
+
2023-10-13 18:29:55,370 saving best model
|
135 |
+
2023-10-13 18:29:55,914 ----------------------------------------------------------------------------------------------------
|
136 |
+
2023-10-13 18:30:00,745 epoch 5 - iter 73/738 - loss 0.03463417 - time (sec): 4.83 - samples/sec: 3466.69 - lr: 0.000020 - momentum: 0.000000
|
137 |
+
2023-10-13 18:30:05,323 epoch 5 - iter 146/738 - loss 0.03424645 - time (sec): 9.40 - samples/sec: 3330.81 - lr: 0.000019 - momentum: 0.000000
|
138 |
+
2023-10-13 18:30:10,542 epoch 5 - iter 219/738 - loss 0.03250383 - time (sec): 14.62 - samples/sec: 3279.94 - lr: 0.000019 - momentum: 0.000000
|
139 |
+
2023-10-13 18:30:15,573 epoch 5 - iter 292/738 - loss 0.03238949 - time (sec): 19.65 - samples/sec: 3278.44 - lr: 0.000019 - momentum: 0.000000
|
140 |
+
2023-10-13 18:30:20,752 epoch 5 - iter 365/738 - loss 0.03263209 - time (sec): 24.83 - samples/sec: 3282.40 - lr: 0.000018 - momentum: 0.000000
|
141 |
+
2023-10-13 18:30:25,879 epoch 5 - iter 438/738 - loss 0.03210855 - time (sec): 29.96 - samples/sec: 3280.02 - lr: 0.000018 - momentum: 0.000000
|
142 |
+
2023-10-13 18:30:30,870 epoch 5 - iter 511/738 - loss 0.03349194 - time (sec): 34.95 - samples/sec: 3286.12 - lr: 0.000018 - momentum: 0.000000
|
143 |
+
2023-10-13 18:30:36,087 epoch 5 - iter 584/738 - loss 0.03354639 - time (sec): 40.17 - samples/sec: 3282.79 - lr: 0.000017 - momentum: 0.000000
|
144 |
+
2023-10-13 18:30:41,586 epoch 5 - iter 657/738 - loss 0.03422851 - time (sec): 45.67 - samples/sec: 3256.83 - lr: 0.000017 - momentum: 0.000000
|
145 |
+
2023-10-13 18:30:46,158 epoch 5 - iter 730/738 - loss 0.03467585 - time (sec): 50.24 - samples/sec: 3276.48 - lr: 0.000017 - momentum: 0.000000
|
146 |
+
2023-10-13 18:30:46,772 ----------------------------------------------------------------------------------------------------
|
147 |
+
2023-10-13 18:30:46,773 EPOCH 5 done: loss 0.0344 - lr: 0.000017
|
148 |
+
2023-10-13 18:30:57,925 DEV : loss 0.16191978752613068 - f1-score (micro avg) 0.8316
|
149 |
+
2023-10-13 18:30:57,954 saving best model
|
150 |
+
2023-10-13 18:30:58,448 ----------------------------------------------------------------------------------------------------
|
151 |
+
2023-10-13 18:31:03,446 epoch 6 - iter 73/738 - loss 0.03187475 - time (sec): 5.00 - samples/sec: 3395.25 - lr: 0.000016 - momentum: 0.000000
|
152 |
+
2023-10-13 18:31:08,103 epoch 6 - iter 146/738 - loss 0.02607637 - time (sec): 9.65 - samples/sec: 3340.93 - lr: 0.000016 - momentum: 0.000000
|
153 |
+
2023-10-13 18:31:12,977 epoch 6 - iter 219/738 - loss 0.02584962 - time (sec): 14.53 - samples/sec: 3330.61 - lr: 0.000016 - momentum: 0.000000
|
154 |
+
2023-10-13 18:31:17,890 epoch 6 - iter 292/738 - loss 0.02764999 - time (sec): 19.44 - samples/sec: 3322.47 - lr: 0.000015 - momentum: 0.000000
|
155 |
+
2023-10-13 18:31:22,652 epoch 6 - iter 365/738 - loss 0.02678067 - time (sec): 24.20 - samples/sec: 3311.91 - lr: 0.000015 - momentum: 0.000000
|
156 |
+
2023-10-13 18:31:27,144 epoch 6 - iter 438/738 - loss 0.02654707 - time (sec): 28.69 - samples/sec: 3322.25 - lr: 0.000015 - momentum: 0.000000
|
157 |
+
2023-10-13 18:31:32,359 epoch 6 - iter 511/738 - loss 0.02516894 - time (sec): 33.91 - samples/sec: 3334.53 - lr: 0.000014 - momentum: 0.000000
|
158 |
+
2023-10-13 18:31:37,209 epoch 6 - iter 584/738 - loss 0.02524705 - time (sec): 38.76 - samples/sec: 3337.29 - lr: 0.000014 - momentum: 0.000000
|
159 |
+
2023-10-13 18:31:42,168 epoch 6 - iter 657/738 - loss 0.02616650 - time (sec): 43.72 - samples/sec: 3335.83 - lr: 0.000014 - momentum: 0.000000
|
160 |
+
2023-10-13 18:31:47,146 epoch 6 - iter 730/738 - loss 0.02554515 - time (sec): 48.70 - samples/sec: 3369.83 - lr: 0.000013 - momentum: 0.000000
|
161 |
+
2023-10-13 18:31:47,871 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-13 18:31:47,871 EPOCH 6 done: loss 0.0256 - lr: 0.000013
|
163 |
+
2023-10-13 18:31:59,141 DEV : loss 0.18813824653625488 - f1-score (micro avg) 0.8172
|
164 |
+
2023-10-13 18:31:59,170 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-13 18:32:04,119 epoch 7 - iter 73/738 - loss 0.01945020 - time (sec): 4.95 - samples/sec: 3505.84 - lr: 0.000013 - momentum: 0.000000
|
166 |
+
2023-10-13 18:32:09,953 epoch 7 - iter 146/738 - loss 0.02190146 - time (sec): 10.78 - samples/sec: 3316.79 - lr: 0.000013 - momentum: 0.000000
|
167 |
+
2023-10-13 18:32:15,106 epoch 7 - iter 219/738 - loss 0.01858043 - time (sec): 15.93 - samples/sec: 3324.70 - lr: 0.000012 - momentum: 0.000000
|
168 |
+
2023-10-13 18:32:20,277 epoch 7 - iter 292/738 - loss 0.01910198 - time (sec): 21.11 - samples/sec: 3364.95 - lr: 0.000012 - momentum: 0.000000
|
169 |
+
2023-10-13 18:32:24,500 epoch 7 - iter 365/738 - loss 0.01972075 - time (sec): 25.33 - samples/sec: 3391.31 - lr: 0.000012 - momentum: 0.000000
|
170 |
+
2023-10-13 18:32:29,452 epoch 7 - iter 438/738 - loss 0.02062901 - time (sec): 30.28 - samples/sec: 3382.30 - lr: 0.000011 - momentum: 0.000000
|
171 |
+
2023-10-13 18:32:34,183 epoch 7 - iter 511/738 - loss 0.01984974 - time (sec): 35.01 - samples/sec: 3373.91 - lr: 0.000011 - momentum: 0.000000
|
172 |
+
2023-10-13 18:32:38,775 epoch 7 - iter 584/738 - loss 0.01906639 - time (sec): 39.60 - samples/sec: 3372.83 - lr: 0.000011 - momentum: 0.000000
|
173 |
+
2023-10-13 18:32:43,455 epoch 7 - iter 657/738 - loss 0.01891734 - time (sec): 44.28 - samples/sec: 3373.12 - lr: 0.000010 - momentum: 0.000000
|
174 |
+
2023-10-13 18:32:48,038 epoch 7 - iter 730/738 - loss 0.01895225 - time (sec): 48.87 - samples/sec: 3368.29 - lr: 0.000010 - momentum: 0.000000
|
175 |
+
2023-10-13 18:32:48,534 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-13 18:32:48,534 EPOCH 7 done: loss 0.0192 - lr: 0.000010
|
177 |
+
2023-10-13 18:32:59,738 DEV : loss 0.21069413423538208 - f1-score (micro avg) 0.8205
|
178 |
+
2023-10-13 18:32:59,768 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-13 18:33:04,738 epoch 8 - iter 73/738 - loss 0.01208919 - time (sec): 4.97 - samples/sec: 3546.99 - lr: 0.000010 - momentum: 0.000000
|
180 |
+
2023-10-13 18:33:09,349 epoch 8 - iter 146/738 - loss 0.01011562 - time (sec): 9.58 - samples/sec: 3428.49 - lr: 0.000009 - momentum: 0.000000
|
181 |
+
2023-10-13 18:33:14,711 epoch 8 - iter 219/738 - loss 0.01197427 - time (sec): 14.94 - samples/sec: 3453.24 - lr: 0.000009 - momentum: 0.000000
|
182 |
+
2023-10-13 18:33:19,729 epoch 8 - iter 292/738 - loss 0.01073791 - time (sec): 19.96 - samples/sec: 3356.40 - lr: 0.000009 - momentum: 0.000000
|
183 |
+
2023-10-13 18:33:24,003 epoch 8 - iter 365/738 - loss 0.01273368 - time (sec): 24.23 - samples/sec: 3359.97 - lr: 0.000008 - momentum: 0.000000
|
184 |
+
2023-10-13 18:33:28,829 epoch 8 - iter 438/738 - loss 0.01246504 - time (sec): 29.06 - samples/sec: 3347.32 - lr: 0.000008 - momentum: 0.000000
|
185 |
+
2023-10-13 18:33:33,827 epoch 8 - iter 511/738 - loss 0.01250396 - time (sec): 34.06 - samples/sec: 3368.55 - lr: 0.000008 - momentum: 0.000000
|
186 |
+
2023-10-13 18:33:38,771 epoch 8 - iter 584/738 - loss 0.01223467 - time (sec): 39.00 - samples/sec: 3356.88 - lr: 0.000007 - momentum: 0.000000
|
187 |
+
2023-10-13 18:33:43,688 epoch 8 - iter 657/738 - loss 0.01262949 - time (sec): 43.92 - samples/sec: 3350.21 - lr: 0.000007 - momentum: 0.000000
|
188 |
+
2023-10-13 18:33:48,706 epoch 8 - iter 730/738 - loss 0.01263386 - time (sec): 48.94 - samples/sec: 3352.69 - lr: 0.000007 - momentum: 0.000000
|
189 |
+
2023-10-13 18:33:49,394 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-13 18:33:49,395 EPOCH 8 done: loss 0.0125 - lr: 0.000007
|
191 |
+
2023-10-13 18:34:00,541 DEV : loss 0.1914064884185791 - f1-score (micro avg) 0.8327
|
192 |
+
2023-10-13 18:34:00,571 saving best model
|
193 |
+
2023-10-13 18:34:01,118 ----------------------------------------------------------------------------------------------------
|
194 |
+
2023-10-13 18:34:05,943 epoch 9 - iter 73/738 - loss 0.01636345 - time (sec): 4.82 - samples/sec: 3310.78 - lr: 0.000006 - momentum: 0.000000
|
195 |
+
2023-10-13 18:34:10,703 epoch 9 - iter 146/738 - loss 0.01343032 - time (sec): 9.58 - samples/sec: 3354.67 - lr: 0.000006 - momentum: 0.000000
|
196 |
+
2023-10-13 18:34:15,064 epoch 9 - iter 219/738 - loss 0.01024467 - time (sec): 13.94 - samples/sec: 3361.07 - lr: 0.000006 - momentum: 0.000000
|
197 |
+
2023-10-13 18:34:20,316 epoch 9 - iter 292/738 - loss 0.01040151 - time (sec): 19.20 - samples/sec: 3322.59 - lr: 0.000005 - momentum: 0.000000
|
198 |
+
2023-10-13 18:34:25,011 epoch 9 - iter 365/738 - loss 0.00980650 - time (sec): 23.89 - samples/sec: 3318.50 - lr: 0.000005 - momentum: 0.000000
|
199 |
+
2023-10-13 18:34:29,967 epoch 9 - iter 438/738 - loss 0.00914193 - time (sec): 28.85 - samples/sec: 3308.67 - lr: 0.000005 - momentum: 0.000000
|
200 |
+
2023-10-13 18:34:35,040 epoch 9 - iter 511/738 - loss 0.00900502 - time (sec): 33.92 - samples/sec: 3333.78 - lr: 0.000004 - momentum: 0.000000
|
201 |
+
2023-10-13 18:34:40,548 epoch 9 - iter 584/738 - loss 0.00995733 - time (sec): 39.43 - samples/sec: 3334.23 - lr: 0.000004 - momentum: 0.000000
|
202 |
+
2023-10-13 18:34:45,124 epoch 9 - iter 657/738 - loss 0.00904693 - time (sec): 44.00 - samples/sec: 3336.14 - lr: 0.000004 - momentum: 0.000000
|
203 |
+
2023-10-13 18:34:49,897 epoch 9 - iter 730/738 - loss 0.00901017 - time (sec): 48.78 - samples/sec: 3355.24 - lr: 0.000003 - momentum: 0.000000
|
204 |
+
2023-10-13 18:34:50,765 ----------------------------------------------------------------------------------------------------
|
205 |
+
2023-10-13 18:34:50,765 EPOCH 9 done: loss 0.0089 - lr: 0.000003
|
206 |
+
2023-10-13 18:35:02,006 DEV : loss 0.20760603249073029 - f1-score (micro avg) 0.8264
|
207 |
+
2023-10-13 18:35:02,036 ----------------------------------------------------------------------------------------------------
|
208 |
+
2023-10-13 18:35:06,611 epoch 10 - iter 73/738 - loss 0.00505717 - time (sec): 4.57 - samples/sec: 3318.85 - lr: 0.000003 - momentum: 0.000000
|
209 |
+
2023-10-13 18:35:11,830 epoch 10 - iter 146/738 - loss 0.00742873 - time (sec): 9.79 - samples/sec: 3315.90 - lr: 0.000003 - momentum: 0.000000
|
210 |
+
2023-10-13 18:35:17,652 epoch 10 - iter 219/738 - loss 0.00650006 - time (sec): 15.62 - samples/sec: 3154.32 - lr: 0.000002 - momentum: 0.000000
|
211 |
+
2023-10-13 18:35:22,973 epoch 10 - iter 292/738 - loss 0.00677815 - time (sec): 20.94 - samples/sec: 3170.26 - lr: 0.000002 - momentum: 0.000000
|
212 |
+
2023-10-13 18:35:28,293 epoch 10 - iter 365/738 - loss 0.00621081 - time (sec): 26.26 - samples/sec: 3208.44 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-13 18:35:32,788 epoch 10 - iter 438/738 - loss 0.00657852 - time (sec): 30.75 - samples/sec: 3245.23 - lr: 0.000001 - momentum: 0.000000
|
214 |
+
2023-10-13 18:35:37,205 epoch 10 - iter 511/738 - loss 0.00821402 - time (sec): 35.17 - samples/sec: 3273.58 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-13 18:35:42,271 epoch 10 - iter 584/738 - loss 0.00795187 - time (sec): 40.23 - samples/sec: 3268.92 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-13 18:35:47,325 epoch 10 - iter 657/738 - loss 0.00749875 - time (sec): 45.29 - samples/sec: 3296.73 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-13 18:35:51,858 epoch 10 - iter 730/738 - loss 0.00725227 - time (sec): 49.82 - samples/sec: 3308.48 - lr: 0.000000 - momentum: 0.000000
|
218 |
+
2023-10-13 18:35:52,320 ----------------------------------------------------------------------------------------------------
|
219 |
+
2023-10-13 18:35:52,320 EPOCH 10 done: loss 0.0072 - lr: 0.000000
|
220 |
+
2023-10-13 18:36:03,499 DEV : loss 0.20923016965389252 - f1-score (micro avg) 0.8323
|
221 |
+
2023-10-13 18:36:03,920 ----------------------------------------------------------------------------------------------------
|
222 |
+
2023-10-13 18:36:03,922 Loading model from best epoch ...
|
223 |
+
2023-10-13 18:36:05,272 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod
|
224 |
+
2023-10-13 18:36:11,234
|
225 |
+
Results:
|
226 |
+
- F-score (micro) 0.8013
|
227 |
+
- F-score (macro) 0.7115
|
228 |
+
- Accuracy 0.6915
|
229 |
+
|
230 |
+
By class:
|
231 |
+
precision recall f1-score support
|
232 |
+
|
233 |
+
loc 0.8692 0.8671 0.8681 858
|
234 |
+
pers 0.7301 0.8212 0.7730 537
|
235 |
+
org 0.6170 0.6591 0.6374 132
|
236 |
+
prod 0.7119 0.6885 0.7000 61
|
237 |
+
time 0.5500 0.6111 0.5789 54
|
238 |
+
|
239 |
+
micro avg 0.7831 0.8203 0.8013 1642
|
240 |
+
macro avg 0.6956 0.7294 0.7115 1642
|
241 |
+
weighted avg 0.7871 0.8203 0.8027 1642
|
242 |
+
|
243 |
+
2023-10-13 18:36:11,234 ----------------------------------------------------------------------------------------------------
|