|
2023-10-13 18:47:26,353 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:47:26,354 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=21, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-13 18:47:26,354 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:47:26,354 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences |
|
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator |
|
2023-10-13 18:47:26,354 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:47:26,354 Train: 5901 sentences |
|
2023-10-13 18:47:26,354 (train_with_dev=False, train_with_test=False) |
|
2023-10-13 18:47:26,354 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:47:26,354 Training Params: |
|
2023-10-13 18:47:26,354 - learning_rate: "3e-05" |
|
2023-10-13 18:47:26,354 - mini_batch_size: "4" |
|
2023-10-13 18:47:26,354 - max_epochs: "10" |
|
2023-10-13 18:47:26,354 - shuffle: "True" |
|
2023-10-13 18:47:26,354 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:47:26,354 Plugins: |
|
2023-10-13 18:47:26,355 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-13 18:47:26,355 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:47:26,355 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-13 18:47:26,355 - metric: "('micro avg', 'f1-score')" |
|
2023-10-13 18:47:26,355 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:47:26,355 Computation: |
|
2023-10-13 18:47:26,355 - compute on device: cuda:0 |
|
2023-10-13 18:47:26,355 - embedding storage: none |
|
2023-10-13 18:47:26,355 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:47:26,355 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-5" |
|
2023-10-13 18:47:26,355 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:47:26,355 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:47:33,216 epoch 1 - iter 147/1476 - loss 2.47203040 - time (sec): 6.86 - samples/sec: 2369.63 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 18:47:40,117 epoch 1 - iter 294/1476 - loss 1.53224631 - time (sec): 13.76 - samples/sec: 2378.60 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 18:47:46,944 epoch 1 - iter 441/1476 - loss 1.16457223 - time (sec): 20.59 - samples/sec: 2370.35 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 18:47:53,832 epoch 1 - iter 588/1476 - loss 0.95570083 - time (sec): 27.48 - samples/sec: 2364.52 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 18:48:01,003 epoch 1 - iter 735/1476 - loss 0.82886372 - time (sec): 34.65 - samples/sec: 2368.14 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 18:48:07,676 epoch 1 - iter 882/1476 - loss 0.73918529 - time (sec): 41.32 - samples/sec: 2345.23 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 18:48:14,768 epoch 1 - iter 1029/1476 - loss 0.66297514 - time (sec): 48.41 - samples/sec: 2363.63 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 18:48:21,818 epoch 1 - iter 1176/1476 - loss 0.60069633 - time (sec): 55.46 - samples/sec: 2382.71 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 18:48:28,594 epoch 1 - iter 1323/1476 - loss 0.55590049 - time (sec): 62.24 - samples/sec: 2387.70 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 18:48:35,652 epoch 1 - iter 1470/1476 - loss 0.51835277 - time (sec): 69.30 - samples/sec: 2393.10 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-13 18:48:35,906 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:48:35,906 EPOCH 1 done: loss 0.5173 - lr: 0.000030 |
|
2023-10-13 18:48:42,033 DEV : loss 0.1586601436138153 - f1-score (micro avg) 0.6953 |
|
2023-10-13 18:48:42,061 saving best model |
|
2023-10-13 18:48:42,528 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:48:49,482 epoch 2 - iter 147/1476 - loss 0.13516442 - time (sec): 6.95 - samples/sec: 2412.34 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-13 18:48:56,332 epoch 2 - iter 294/1476 - loss 0.13649252 - time (sec): 13.80 - samples/sec: 2404.93 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 18:49:03,501 epoch 2 - iter 441/1476 - loss 0.13545397 - time (sec): 20.97 - samples/sec: 2383.51 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 18:49:10,326 epoch 2 - iter 588/1476 - loss 0.13055225 - time (sec): 27.80 - samples/sec: 2354.64 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 18:49:17,578 epoch 2 - iter 735/1476 - loss 0.12511794 - time (sec): 35.05 - samples/sec: 2390.45 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 18:49:25,271 epoch 2 - iter 882/1476 - loss 0.12920863 - time (sec): 42.74 - samples/sec: 2446.74 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 18:49:31,880 epoch 2 - iter 1029/1476 - loss 0.12753320 - time (sec): 49.35 - samples/sec: 2427.35 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 18:49:38,827 epoch 2 - iter 1176/1476 - loss 0.12657849 - time (sec): 56.30 - samples/sec: 2430.44 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 18:49:45,338 epoch 2 - iter 1323/1476 - loss 0.12667487 - time (sec): 62.81 - samples/sec: 2406.92 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 18:49:52,047 epoch 2 - iter 1470/1476 - loss 0.12663562 - time (sec): 69.52 - samples/sec: 2388.22 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 18:49:52,313 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:49:52,313 EPOCH 2 done: loss 0.1266 - lr: 0.000027 |
|
2023-10-13 18:50:03,449 DEV : loss 0.13426746428012848 - f1-score (micro avg) 0.7842 |
|
2023-10-13 18:50:03,480 saving best model |
|
2023-10-13 18:50:04,015 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:50:11,260 epoch 3 - iter 147/1476 - loss 0.06400595 - time (sec): 7.24 - samples/sec: 2559.29 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 18:50:18,213 epoch 3 - iter 294/1476 - loss 0.06628312 - time (sec): 14.20 - samples/sec: 2483.12 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 18:50:25,140 epoch 3 - iter 441/1476 - loss 0.07296170 - time (sec): 21.12 - samples/sec: 2463.79 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 18:50:32,364 epoch 3 - iter 588/1476 - loss 0.08168640 - time (sec): 28.35 - samples/sec: 2478.57 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 18:50:39,055 epoch 3 - iter 735/1476 - loss 0.08289348 - time (sec): 35.04 - samples/sec: 2447.79 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 18:50:45,924 epoch 3 - iter 882/1476 - loss 0.08210391 - time (sec): 41.91 - samples/sec: 2430.46 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 18:50:52,737 epoch 3 - iter 1029/1476 - loss 0.08197948 - time (sec): 48.72 - samples/sec: 2410.53 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 18:50:59,573 epoch 3 - iter 1176/1476 - loss 0.08119702 - time (sec): 55.56 - samples/sec: 2406.42 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 18:51:06,452 epoch 3 - iter 1323/1476 - loss 0.08162410 - time (sec): 62.44 - samples/sec: 2401.71 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 18:51:13,132 epoch 3 - iter 1470/1476 - loss 0.08267840 - time (sec): 69.12 - samples/sec: 2400.10 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 18:51:13,388 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:51:13,389 EPOCH 3 done: loss 0.0825 - lr: 0.000023 |
|
2023-10-13 18:51:24,588 DEV : loss 0.15468844771385193 - f1-score (micro avg) 0.7969 |
|
2023-10-13 18:51:24,619 saving best model |
|
2023-10-13 18:51:25,121 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:51:31,983 epoch 4 - iter 147/1476 - loss 0.06136683 - time (sec): 6.86 - samples/sec: 2352.06 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 18:51:39,343 epoch 4 - iter 294/1476 - loss 0.06998431 - time (sec): 14.22 - samples/sec: 2509.18 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 18:51:46,299 epoch 4 - iter 441/1476 - loss 0.06564666 - time (sec): 21.17 - samples/sec: 2446.49 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 18:51:52,964 epoch 4 - iter 588/1476 - loss 0.06527905 - time (sec): 27.84 - samples/sec: 2380.86 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 18:51:59,887 epoch 4 - iter 735/1476 - loss 0.06299237 - time (sec): 34.76 - samples/sec: 2400.68 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 18:52:06,636 epoch 4 - iter 882/1476 - loss 0.06239020 - time (sec): 41.51 - samples/sec: 2398.39 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 18:52:13,344 epoch 4 - iter 1029/1476 - loss 0.06088924 - time (sec): 48.22 - samples/sec: 2377.28 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 18:52:20,126 epoch 4 - iter 1176/1476 - loss 0.05807939 - time (sec): 55.00 - samples/sec: 2374.78 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 18:52:27,021 epoch 4 - iter 1323/1476 - loss 0.05765390 - time (sec): 61.89 - samples/sec: 2371.42 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 18:52:34,328 epoch 4 - iter 1470/1476 - loss 0.05616269 - time (sec): 69.20 - samples/sec: 2396.99 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 18:52:34,590 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:52:34,590 EPOCH 4 done: loss 0.0563 - lr: 0.000020 |
|
2023-10-13 18:52:45,814 DEV : loss 0.17033860087394714 - f1-score (micro avg) 0.8106 |
|
2023-10-13 18:52:45,844 saving best model |
|
2023-10-13 18:52:46,323 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:52:53,267 epoch 5 - iter 147/1476 - loss 0.04144502 - time (sec): 6.94 - samples/sec: 2423.87 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 18:52:59,900 epoch 5 - iter 294/1476 - loss 0.04606724 - time (sec): 13.57 - samples/sec: 2328.10 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 18:53:06,912 epoch 5 - iter 441/1476 - loss 0.03973065 - time (sec): 20.58 - samples/sec: 2344.48 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 18:53:13,730 epoch 5 - iter 588/1476 - loss 0.03622589 - time (sec): 27.40 - samples/sec: 2366.89 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 18:53:20,750 epoch 5 - iter 735/1476 - loss 0.03811454 - time (sec): 34.42 - samples/sec: 2385.48 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 18:53:27,625 epoch 5 - iter 882/1476 - loss 0.03708256 - time (sec): 41.30 - samples/sec: 2394.12 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 18:53:34,708 epoch 5 - iter 1029/1476 - loss 0.03955991 - time (sec): 48.38 - samples/sec: 2398.84 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 18:53:41,663 epoch 5 - iter 1176/1476 - loss 0.04041590 - time (sec): 55.34 - samples/sec: 2397.38 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 18:53:48,587 epoch 5 - iter 1323/1476 - loss 0.04037167 - time (sec): 62.26 - samples/sec: 2404.17 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 18:53:55,407 epoch 5 - iter 1470/1476 - loss 0.04036140 - time (sec): 69.08 - samples/sec: 2400.21 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 18:53:55,675 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:53:55,675 EPOCH 5 done: loss 0.0402 - lr: 0.000017 |
|
2023-10-13 18:54:06,901 DEV : loss 0.1789896935224533 - f1-score (micro avg) 0.8262 |
|
2023-10-13 18:54:06,932 saving best model |
|
2023-10-13 18:54:07,408 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:54:14,802 epoch 6 - iter 147/1476 - loss 0.02954124 - time (sec): 7.39 - samples/sec: 2309.03 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 18:54:21,552 epoch 6 - iter 294/1476 - loss 0.02823268 - time (sec): 14.14 - samples/sec: 2296.57 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 18:54:28,596 epoch 6 - iter 441/1476 - loss 0.02553327 - time (sec): 21.18 - samples/sec: 2307.96 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 18:54:35,572 epoch 6 - iter 588/1476 - loss 0.02831420 - time (sec): 28.16 - samples/sec: 2319.15 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 18:54:42,364 epoch 6 - iter 735/1476 - loss 0.02702751 - time (sec): 34.95 - samples/sec: 2309.41 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 18:54:49,162 epoch 6 - iter 882/1476 - loss 0.02657347 - time (sec): 41.75 - samples/sec: 2301.97 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 18:54:56,165 epoch 6 - iter 1029/1476 - loss 0.02729635 - time (sec): 48.75 - samples/sec: 2333.31 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 18:55:03,119 epoch 6 - iter 1176/1476 - loss 0.02915968 - time (sec): 55.71 - samples/sec: 2337.65 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 18:55:10,018 epoch 6 - iter 1323/1476 - loss 0.02965009 - time (sec): 62.60 - samples/sec: 2342.88 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 18:55:17,017 epoch 6 - iter 1470/1476 - loss 0.02919942 - time (sec): 69.60 - samples/sec: 2372.02 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 18:55:17,440 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:55:17,440 EPOCH 6 done: loss 0.0290 - lr: 0.000013 |
|
2023-10-13 18:55:28,623 DEV : loss 0.2175937294960022 - f1-score (micro avg) 0.8074 |
|
2023-10-13 18:55:28,651 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:55:35,576 epoch 7 - iter 147/1476 - loss 0.03078954 - time (sec): 6.92 - samples/sec: 2523.71 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 18:55:42,711 epoch 7 - iter 294/1476 - loss 0.02613132 - time (sec): 14.06 - samples/sec: 2560.65 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 18:55:49,569 epoch 7 - iter 441/1476 - loss 0.02307156 - time (sec): 20.92 - samples/sec: 2556.92 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 18:55:56,397 epoch 7 - iter 588/1476 - loss 0.02372509 - time (sec): 27.74 - samples/sec: 2577.17 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 18:56:02,657 epoch 7 - iter 735/1476 - loss 0.02290695 - time (sec): 34.00 - samples/sec: 2544.01 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 18:56:09,563 epoch 7 - iter 882/1476 - loss 0.02287812 - time (sec): 40.91 - samples/sec: 2529.13 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 18:56:16,218 epoch 7 - iter 1029/1476 - loss 0.02273386 - time (sec): 47.57 - samples/sec: 2497.38 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 18:56:22,941 epoch 7 - iter 1176/1476 - loss 0.02186207 - time (sec): 54.29 - samples/sec: 2476.20 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 18:56:29,677 epoch 7 - iter 1323/1476 - loss 0.02249581 - time (sec): 61.02 - samples/sec: 2460.89 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 18:56:36,428 epoch 7 - iter 1470/1476 - loss 0.02161244 - time (sec): 67.78 - samples/sec: 2447.38 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 18:56:36,692 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:56:36,692 EPOCH 7 done: loss 0.0216 - lr: 0.000010 |
|
2023-10-13 18:56:47,948 DEV : loss 0.20365940034389496 - f1-score (micro avg) 0.8297 |
|
2023-10-13 18:56:47,979 saving best model |
|
2023-10-13 18:56:48,508 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:56:55,502 epoch 8 - iter 147/1476 - loss 0.01368682 - time (sec): 6.99 - samples/sec: 2531.95 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 18:57:02,204 epoch 8 - iter 294/1476 - loss 0.01246331 - time (sec): 13.69 - samples/sec: 2414.93 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 18:57:09,400 epoch 8 - iter 441/1476 - loss 0.01614129 - time (sec): 20.89 - samples/sec: 2483.02 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 18:57:16,317 epoch 8 - iter 588/1476 - loss 0.01524708 - time (sec): 27.81 - samples/sec: 2425.87 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 18:57:22,822 epoch 8 - iter 735/1476 - loss 0.01581981 - time (sec): 34.31 - samples/sec: 2384.81 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 18:57:29,986 epoch 8 - iter 882/1476 - loss 0.01639056 - time (sec): 41.48 - samples/sec: 2406.11 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 18:57:36,747 epoch 8 - iter 1029/1476 - loss 0.01574671 - time (sec): 48.24 - samples/sec: 2404.17 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 18:57:43,644 epoch 8 - iter 1176/1476 - loss 0.01490286 - time (sec): 55.13 - samples/sec: 2390.65 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 18:57:50,534 epoch 8 - iter 1323/1476 - loss 0.01468391 - time (sec): 62.02 - samples/sec: 2389.87 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 18:57:57,551 epoch 8 - iter 1470/1476 - loss 0.01407014 - time (sec): 69.04 - samples/sec: 2402.22 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 18:57:57,816 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:57:57,816 EPOCH 8 done: loss 0.0140 - lr: 0.000007 |
|
2023-10-13 18:58:09,064 DEV : loss 0.20413334667682648 - f1-score (micro avg) 0.8364 |
|
2023-10-13 18:58:09,094 saving best model |
|
2023-10-13 18:58:09,586 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:58:16,496 epoch 9 - iter 147/1476 - loss 0.01422764 - time (sec): 6.91 - samples/sec: 2327.73 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 18:58:23,345 epoch 9 - iter 294/1476 - loss 0.01591919 - time (sec): 13.76 - samples/sec: 2349.67 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 18:58:29,983 epoch 9 - iter 441/1476 - loss 0.01220372 - time (sec): 20.40 - samples/sec: 2307.67 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 18:58:37,103 epoch 9 - iter 588/1476 - loss 0.01151508 - time (sec): 27.52 - samples/sec: 2333.85 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 18:58:44,024 epoch 9 - iter 735/1476 - loss 0.01111149 - time (sec): 34.44 - samples/sec: 2316.75 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 18:58:51,025 epoch 9 - iter 882/1476 - loss 0.01047146 - time (sec): 41.44 - samples/sec: 2316.50 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 18:58:58,130 epoch 9 - iter 1029/1476 - loss 0.00997977 - time (sec): 48.54 - samples/sec: 2345.47 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 18:59:05,454 epoch 9 - iter 1176/1476 - loss 0.01061230 - time (sec): 55.87 - samples/sec: 2367.08 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 18:59:12,178 epoch 9 - iter 1323/1476 - loss 0.01020875 - time (sec): 62.59 - samples/sec: 2357.94 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 18:59:19,220 epoch 9 - iter 1470/1476 - loss 0.01015093 - time (sec): 69.63 - samples/sec: 2370.02 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 18:59:19,651 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:59:19,651 EPOCH 9 done: loss 0.0101 - lr: 0.000003 |
|
2023-10-13 18:59:30,827 DEV : loss 0.21342383325099945 - f1-score (micro avg) 0.832 |
|
2023-10-13 18:59:30,857 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 18:59:37,684 epoch 10 - iter 147/1476 - loss 0.00481638 - time (sec): 6.83 - samples/sec: 2248.25 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 18:59:44,816 epoch 10 - iter 294/1476 - loss 0.00647829 - time (sec): 13.96 - samples/sec: 2359.27 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 18:59:51,824 epoch 10 - iter 441/1476 - loss 0.00596617 - time (sec): 20.97 - samples/sec: 2362.46 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 18:59:58,867 epoch 10 - iter 588/1476 - loss 0.00519237 - time (sec): 28.01 - samples/sec: 2381.30 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 19:00:06,044 epoch 10 - iter 735/1476 - loss 0.00546008 - time (sec): 35.19 - samples/sec: 2406.51 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 19:00:12,744 epoch 10 - iter 882/1476 - loss 0.00545956 - time (sec): 41.89 - samples/sec: 2395.55 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 19:00:19,404 epoch 10 - iter 1029/1476 - loss 0.00758172 - time (sec): 48.55 - samples/sec: 2385.54 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 19:00:26,452 epoch 10 - iter 1176/1476 - loss 0.00734000 - time (sec): 55.59 - samples/sec: 2379.50 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 19:00:33,555 epoch 10 - iter 1323/1476 - loss 0.00755594 - time (sec): 62.70 - samples/sec: 2397.75 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-13 19:00:40,328 epoch 10 - iter 1470/1476 - loss 0.00764843 - time (sec): 69.47 - samples/sec: 2386.23 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-13 19:00:40,604 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 19:00:40,605 EPOCH 10 done: loss 0.0076 - lr: 0.000000 |
|
2023-10-13 19:00:51,848 DEV : loss 0.21848614513874054 - f1-score (micro avg) 0.8312 |
|
2023-10-13 19:00:52,254 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 19:00:52,255 Loading model from best epoch ... |
|
2023-10-13 19:00:53,719 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod |
|
2023-10-13 19:01:00,089 |
|
Results: |
|
- F-score (micro) 0.805 |
|
- F-score (macro) 0.704 |
|
- Accuracy 0.6957 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.8842 0.8718 0.8779 858 |
|
pers 0.7330 0.8231 0.7754 537 |
|
org 0.6308 0.6212 0.6260 132 |
|
time 0.5075 0.6296 0.5620 54 |
|
prod 0.7451 0.6230 0.6786 61 |
|
|
|
micro avg 0.7920 0.8185 0.8050 1642 |
|
macro avg 0.7001 0.7137 0.7040 1642 |
|
weighted avg 0.7968 0.8185 0.8064 1642 |
|
|
|
2023-10-13 19:01:00,089 ---------------------------------------------------------------------------------------------------- |
|
|