|
2023-10-13 15:27:51,374 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:27:51,375 Model: "SequenceTagger( |
|
(embeddings): TransformerWordEmbeddings( |
|
(model): BertModel( |
|
(embeddings): BertEmbeddings( |
|
(word_embeddings): Embedding(32001, 768) |
|
(position_embeddings): Embedding(512, 768) |
|
(token_type_embeddings): Embedding(2, 768) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(encoder): BertEncoder( |
|
(layer): ModuleList( |
|
(0-11): 12 x BertLayer( |
|
(attention): BertAttention( |
|
(self): BertSelfAttention( |
|
(query): Linear(in_features=768, out_features=768, bias=True) |
|
(key): Linear(in_features=768, out_features=768, bias=True) |
|
(value): Linear(in_features=768, out_features=768, bias=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
(output): BertSelfOutput( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
(intermediate): BertIntermediate( |
|
(dense): Linear(in_features=768, out_features=3072, bias=True) |
|
(intermediate_act_fn): GELUActivation() |
|
) |
|
(output): BertOutput( |
|
(dense): Linear(in_features=3072, out_features=768, bias=True) |
|
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True) |
|
(dropout): Dropout(p=0.1, inplace=False) |
|
) |
|
) |
|
) |
|
) |
|
(pooler): BertPooler( |
|
(dense): Linear(in_features=768, out_features=768, bias=True) |
|
(activation): Tanh() |
|
) |
|
) |
|
) |
|
(locked_dropout): LockedDropout(p=0.5) |
|
(linear): Linear(in_features=768, out_features=21, bias=True) |
|
(loss_function): CrossEntropyLoss() |
|
)" |
|
2023-10-13 15:27:51,375 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:27:51,375 MultiCorpus: 5901 train + 1287 dev + 1505 test sentences |
|
- NER_HIPE_2022 Corpus: 5901 train + 1287 dev + 1505 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/hipe2020/fr/with_doc_seperator |
|
2023-10-13 15:27:51,375 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:27:51,375 Train: 5901 sentences |
|
2023-10-13 15:27:51,375 (train_with_dev=False, train_with_test=False) |
|
2023-10-13 15:27:51,375 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:27:51,375 Training Params: |
|
2023-10-13 15:27:51,375 - learning_rate: "3e-05" |
|
2023-10-13 15:27:51,375 - mini_batch_size: "4" |
|
2023-10-13 15:27:51,375 - max_epochs: "10" |
|
2023-10-13 15:27:51,375 - shuffle: "True" |
|
2023-10-13 15:27:51,375 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:27:51,375 Plugins: |
|
2023-10-13 15:27:51,375 - LinearScheduler | warmup_fraction: '0.1' |
|
2023-10-13 15:27:51,375 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:27:51,376 Final evaluation on model from best epoch (best-model.pt) |
|
2023-10-13 15:27:51,376 - metric: "('micro avg', 'f1-score')" |
|
2023-10-13 15:27:51,376 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:27:51,376 Computation: |
|
2023-10-13 15:27:51,376 - compute on device: cuda:0 |
|
2023-10-13 15:27:51,376 - embedding storage: none |
|
2023-10-13 15:27:51,376 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:27:51,376 Model training base path: "hmbench-hipe2020/fr-dbmdz/bert-base-historic-multilingual-cased-bs4-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-1" |
|
2023-10-13 15:27:51,376 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:27:51,376 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:27:58,575 epoch 1 - iter 147/1476 - loss 2.67128935 - time (sec): 7.20 - samples/sec: 2344.96 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 15:28:05,440 epoch 1 - iter 294/1476 - loss 1.66437545 - time (sec): 14.06 - samples/sec: 2356.83 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 15:28:12,862 epoch 1 - iter 441/1476 - loss 1.24057897 - time (sec): 21.49 - samples/sec: 2436.27 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 15:28:19,562 epoch 1 - iter 588/1476 - loss 1.03733344 - time (sec): 28.19 - samples/sec: 2390.97 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 15:28:26,431 epoch 1 - iter 735/1476 - loss 0.89839028 - time (sec): 35.05 - samples/sec: 2384.70 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 15:28:33,323 epoch 1 - iter 882/1476 - loss 0.79874819 - time (sec): 41.95 - samples/sec: 2361.49 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 15:28:40,075 epoch 1 - iter 1029/1476 - loss 0.72454902 - time (sec): 48.70 - samples/sec: 2347.97 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 15:28:46,841 epoch 1 - iter 1176/1476 - loss 0.66241525 - time (sec): 55.46 - samples/sec: 2338.34 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 15:28:54,229 epoch 1 - iter 1323/1476 - loss 0.59924863 - time (sec): 62.85 - samples/sec: 2372.82 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 15:29:01,448 epoch 1 - iter 1470/1476 - loss 0.55709201 - time (sec): 70.07 - samples/sec: 2366.27 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-13 15:29:01,707 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:29:01,708 EPOCH 1 done: loss 0.5556 - lr: 0.000030 |
|
2023-10-13 15:29:07,863 DEV : loss 0.14035969972610474 - f1-score (micro avg) 0.7149 |
|
2023-10-13 15:29:07,892 saving best model |
|
2023-10-13 15:29:08,465 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:29:15,669 epoch 2 - iter 147/1476 - loss 0.15079759 - time (sec): 7.20 - samples/sec: 2360.12 - lr: 0.000030 - momentum: 0.000000 |
|
2023-10-13 15:29:22,670 epoch 2 - iter 294/1476 - loss 0.14126703 - time (sec): 14.20 - samples/sec: 2200.45 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 15:29:29,499 epoch 2 - iter 441/1476 - loss 0.14626876 - time (sec): 21.03 - samples/sec: 2222.41 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 15:29:36,399 epoch 2 - iter 588/1476 - loss 0.14067959 - time (sec): 27.93 - samples/sec: 2257.92 - lr: 0.000029 - momentum: 0.000000 |
|
2023-10-13 15:29:43,088 epoch 2 - iter 735/1476 - loss 0.13794568 - time (sec): 34.62 - samples/sec: 2263.69 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 15:29:51,009 epoch 2 - iter 882/1476 - loss 0.13937727 - time (sec): 42.54 - samples/sec: 2355.76 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 15:29:58,281 epoch 2 - iter 1029/1476 - loss 0.13468420 - time (sec): 49.81 - samples/sec: 2350.07 - lr: 0.000028 - momentum: 0.000000 |
|
2023-10-13 15:30:05,519 epoch 2 - iter 1176/1476 - loss 0.13405240 - time (sec): 57.05 - samples/sec: 2334.43 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 15:30:12,368 epoch 2 - iter 1323/1476 - loss 0.13202783 - time (sec): 63.90 - samples/sec: 2345.98 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 15:30:19,112 epoch 2 - iter 1470/1476 - loss 0.12858037 - time (sec): 70.65 - samples/sec: 2348.15 - lr: 0.000027 - momentum: 0.000000 |
|
2023-10-13 15:30:19,372 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:30:19,372 EPOCH 2 done: loss 0.1285 - lr: 0.000027 |
|
2023-10-13 15:30:30,473 DEV : loss 0.1444912701845169 - f1-score (micro avg) 0.764 |
|
2023-10-13 15:30:30,501 saving best model |
|
2023-10-13 15:30:31,009 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:30:38,496 epoch 3 - iter 147/1476 - loss 0.08029554 - time (sec): 7.48 - samples/sec: 2048.88 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 15:30:46,516 epoch 3 - iter 294/1476 - loss 0.07686342 - time (sec): 15.50 - samples/sec: 2024.98 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 15:30:53,679 epoch 3 - iter 441/1476 - loss 0.07956883 - time (sec): 22.66 - samples/sec: 2142.91 - lr: 0.000026 - momentum: 0.000000 |
|
2023-10-13 15:31:00,854 epoch 3 - iter 588/1476 - loss 0.08463364 - time (sec): 29.84 - samples/sec: 2205.98 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 15:31:07,976 epoch 3 - iter 735/1476 - loss 0.08625536 - time (sec): 36.96 - samples/sec: 2256.21 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 15:31:14,723 epoch 3 - iter 882/1476 - loss 0.08680712 - time (sec): 43.71 - samples/sec: 2253.30 - lr: 0.000025 - momentum: 0.000000 |
|
2023-10-13 15:31:21,639 epoch 3 - iter 1029/1476 - loss 0.08602669 - time (sec): 50.62 - samples/sec: 2279.35 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 15:31:28,731 epoch 3 - iter 1176/1476 - loss 0.08666656 - time (sec): 57.72 - samples/sec: 2289.82 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 15:31:35,604 epoch 3 - iter 1323/1476 - loss 0.08609219 - time (sec): 64.59 - samples/sec: 2302.44 - lr: 0.000024 - momentum: 0.000000 |
|
2023-10-13 15:31:42,847 epoch 3 - iter 1470/1476 - loss 0.08337165 - time (sec): 71.83 - samples/sec: 2310.10 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 15:31:43,113 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:31:43,114 EPOCH 3 done: loss 0.0834 - lr: 0.000023 |
|
2023-10-13 15:31:54,210 DEV : loss 0.161760613322258 - f1-score (micro avg) 0.8036 |
|
2023-10-13 15:31:54,239 saving best model |
|
2023-10-13 15:31:55,198 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:32:02,152 epoch 4 - iter 147/1476 - loss 0.05876058 - time (sec): 6.95 - samples/sec: 2278.92 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 15:32:09,259 epoch 4 - iter 294/1476 - loss 0.05569616 - time (sec): 14.06 - samples/sec: 2387.95 - lr: 0.000023 - momentum: 0.000000 |
|
2023-10-13 15:32:16,572 epoch 4 - iter 441/1476 - loss 0.05615460 - time (sec): 21.37 - samples/sec: 2462.00 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 15:32:23,371 epoch 4 - iter 588/1476 - loss 0.05297739 - time (sec): 28.17 - samples/sec: 2406.73 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 15:32:29,991 epoch 4 - iter 735/1476 - loss 0.05364302 - time (sec): 34.79 - samples/sec: 2397.48 - lr: 0.000022 - momentum: 0.000000 |
|
2023-10-13 15:32:36,439 epoch 4 - iter 882/1476 - loss 0.05261850 - time (sec): 41.24 - samples/sec: 2377.08 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 15:32:43,387 epoch 4 - iter 1029/1476 - loss 0.05432762 - time (sec): 48.19 - samples/sec: 2408.94 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 15:32:49,923 epoch 4 - iter 1176/1476 - loss 0.05493788 - time (sec): 54.72 - samples/sec: 2397.34 - lr: 0.000021 - momentum: 0.000000 |
|
2023-10-13 15:32:57,077 epoch 4 - iter 1323/1476 - loss 0.05561241 - time (sec): 61.88 - samples/sec: 2410.01 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 15:33:04,188 epoch 4 - iter 1470/1476 - loss 0.05782730 - time (sec): 68.99 - samples/sec: 2403.75 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 15:33:04,442 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:33:04,442 EPOCH 4 done: loss 0.0577 - lr: 0.000020 |
|
2023-10-13 15:33:15,617 DEV : loss 0.18805062770843506 - f1-score (micro avg) 0.8023 |
|
2023-10-13 15:33:15,646 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:33:22,434 epoch 5 - iter 147/1476 - loss 0.04212635 - time (sec): 6.79 - samples/sec: 2269.00 - lr: 0.000020 - momentum: 0.000000 |
|
2023-10-13 15:33:29,485 epoch 5 - iter 294/1476 - loss 0.03671755 - time (sec): 13.84 - samples/sec: 2274.14 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 15:33:37,084 epoch 5 - iter 441/1476 - loss 0.04111502 - time (sec): 21.44 - samples/sec: 2277.13 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 15:33:44,549 epoch 5 - iter 588/1476 - loss 0.03769225 - time (sec): 28.90 - samples/sec: 2236.07 - lr: 0.000019 - momentum: 0.000000 |
|
2023-10-13 15:33:51,684 epoch 5 - iter 735/1476 - loss 0.03738604 - time (sec): 36.04 - samples/sec: 2280.93 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 15:33:58,651 epoch 5 - iter 882/1476 - loss 0.03956318 - time (sec): 43.00 - samples/sec: 2301.19 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 15:34:05,493 epoch 5 - iter 1029/1476 - loss 0.04047921 - time (sec): 49.85 - samples/sec: 2297.13 - lr: 0.000018 - momentum: 0.000000 |
|
2023-10-13 15:34:12,761 epoch 5 - iter 1176/1476 - loss 0.04008186 - time (sec): 57.11 - samples/sec: 2326.24 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 15:34:19,761 epoch 5 - iter 1323/1476 - loss 0.03983351 - time (sec): 64.11 - samples/sec: 2328.16 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 15:34:26,671 epoch 5 - iter 1470/1476 - loss 0.04072459 - time (sec): 71.02 - samples/sec: 2335.98 - lr: 0.000017 - momentum: 0.000000 |
|
2023-10-13 15:34:26,963 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:34:26,963 EPOCH 5 done: loss 0.0409 - lr: 0.000017 |
|
2023-10-13 15:34:38,138 DEV : loss 0.18352609872817993 - f1-score (micro avg) 0.8138 |
|
2023-10-13 15:34:38,175 saving best model |
|
2023-10-13 15:34:38,693 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:34:45,597 epoch 6 - iter 147/1476 - loss 0.03301350 - time (sec): 6.90 - samples/sec: 2180.03 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 15:34:52,473 epoch 6 - iter 294/1476 - loss 0.03217606 - time (sec): 13.77 - samples/sec: 2226.65 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 15:34:59,887 epoch 6 - iter 441/1476 - loss 0.03175343 - time (sec): 21.19 - samples/sec: 2327.75 - lr: 0.000016 - momentum: 0.000000 |
|
2023-10-13 15:35:07,067 epoch 6 - iter 588/1476 - loss 0.03347640 - time (sec): 28.37 - samples/sec: 2316.77 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 15:35:14,095 epoch 6 - iter 735/1476 - loss 0.03623768 - time (sec): 35.40 - samples/sec: 2321.80 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 15:35:21,146 epoch 6 - iter 882/1476 - loss 0.03364347 - time (sec): 42.45 - samples/sec: 2347.80 - lr: 0.000015 - momentum: 0.000000 |
|
2023-10-13 15:35:27,964 epoch 6 - iter 1029/1476 - loss 0.03302726 - time (sec): 49.26 - samples/sec: 2330.39 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 15:35:34,863 epoch 6 - iter 1176/1476 - loss 0.03257321 - time (sec): 56.16 - samples/sec: 2333.46 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 15:35:42,265 epoch 6 - iter 1323/1476 - loss 0.03242265 - time (sec): 63.57 - samples/sec: 2361.98 - lr: 0.000014 - momentum: 0.000000 |
|
2023-10-13 15:35:49,114 epoch 6 - iter 1470/1476 - loss 0.03154020 - time (sec): 70.41 - samples/sec: 2355.93 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 15:35:49,382 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:35:49,383 EPOCH 6 done: loss 0.0314 - lr: 0.000013 |
|
2023-10-13 15:36:00,508 DEV : loss 0.19981108605861664 - f1-score (micro avg) 0.8107 |
|
2023-10-13 15:36:00,539 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:36:07,373 epoch 7 - iter 147/1476 - loss 0.02210395 - time (sec): 6.83 - samples/sec: 2244.86 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 15:36:14,809 epoch 7 - iter 294/1476 - loss 0.02469555 - time (sec): 14.27 - samples/sec: 2376.50 - lr: 0.000013 - momentum: 0.000000 |
|
2023-10-13 15:36:21,619 epoch 7 - iter 441/1476 - loss 0.02162633 - time (sec): 21.08 - samples/sec: 2330.74 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 15:36:28,788 epoch 7 - iter 588/1476 - loss 0.02184522 - time (sec): 28.25 - samples/sec: 2320.49 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 15:36:36,140 epoch 7 - iter 735/1476 - loss 0.02211174 - time (sec): 35.60 - samples/sec: 2309.65 - lr: 0.000012 - momentum: 0.000000 |
|
2023-10-13 15:36:43,577 epoch 7 - iter 882/1476 - loss 0.02359508 - time (sec): 43.04 - samples/sec: 2338.18 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 15:36:50,676 epoch 7 - iter 1029/1476 - loss 0.02284324 - time (sec): 50.14 - samples/sec: 2361.36 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 15:36:57,732 epoch 7 - iter 1176/1476 - loss 0.02153323 - time (sec): 57.19 - samples/sec: 2358.44 - lr: 0.000011 - momentum: 0.000000 |
|
2023-10-13 15:37:04,473 epoch 7 - iter 1323/1476 - loss 0.02137460 - time (sec): 63.93 - samples/sec: 2343.49 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 15:37:11,276 epoch 7 - iter 1470/1476 - loss 0.02141477 - time (sec): 70.74 - samples/sec: 2345.11 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 15:37:11,571 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:37:11,571 EPOCH 7 done: loss 0.0215 - lr: 0.000010 |
|
2023-10-13 15:37:22,751 DEV : loss 0.20148473978042603 - f1-score (micro avg) 0.8305 |
|
2023-10-13 15:37:22,780 saving best model |
|
2023-10-13 15:37:23,262 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:37:30,423 epoch 8 - iter 147/1476 - loss 0.01204328 - time (sec): 7.16 - samples/sec: 2281.23 - lr: 0.000010 - momentum: 0.000000 |
|
2023-10-13 15:37:37,180 epoch 8 - iter 294/1476 - loss 0.01038902 - time (sec): 13.91 - samples/sec: 2309.22 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 15:37:44,247 epoch 8 - iter 441/1476 - loss 0.01128180 - time (sec): 20.98 - samples/sec: 2379.03 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 15:37:51,183 epoch 8 - iter 588/1476 - loss 0.01249804 - time (sec): 27.92 - samples/sec: 2360.92 - lr: 0.000009 - momentum: 0.000000 |
|
2023-10-13 15:37:58,038 epoch 8 - iter 735/1476 - loss 0.01344434 - time (sec): 34.77 - samples/sec: 2353.59 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 15:38:04,979 epoch 8 - iter 882/1476 - loss 0.01407197 - time (sec): 41.71 - samples/sec: 2342.83 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 15:38:11,924 epoch 8 - iter 1029/1476 - loss 0.01397679 - time (sec): 48.66 - samples/sec: 2334.81 - lr: 0.000008 - momentum: 0.000000 |
|
2023-10-13 15:38:19,217 epoch 8 - iter 1176/1476 - loss 0.01440414 - time (sec): 55.95 - samples/sec: 2355.21 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 15:38:26,144 epoch 8 - iter 1323/1476 - loss 0.01412839 - time (sec): 62.88 - samples/sec: 2359.61 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 15:38:33,233 epoch 8 - iter 1470/1476 - loss 0.01337390 - time (sec): 69.97 - samples/sec: 2371.84 - lr: 0.000007 - momentum: 0.000000 |
|
2023-10-13 15:38:33,482 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:38:33,482 EPOCH 8 done: loss 0.0136 - lr: 0.000007 |
|
2023-10-13 15:38:44,536 DEV : loss 0.20017683506011963 - f1-score (micro avg) 0.8306 |
|
2023-10-13 15:38:44,565 saving best model |
|
2023-10-13 15:38:45,121 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:38:52,432 epoch 9 - iter 147/1476 - loss 0.00826798 - time (sec): 7.31 - samples/sec: 2380.38 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 15:38:59,260 epoch 9 - iter 294/1476 - loss 0.00873267 - time (sec): 14.14 - samples/sec: 2393.03 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 15:39:06,139 epoch 9 - iter 441/1476 - loss 0.01108423 - time (sec): 21.02 - samples/sec: 2357.23 - lr: 0.000006 - momentum: 0.000000 |
|
2023-10-13 15:39:13,148 epoch 9 - iter 588/1476 - loss 0.00932900 - time (sec): 28.03 - samples/sec: 2351.45 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 15:39:20,508 epoch 9 - iter 735/1476 - loss 0.00942840 - time (sec): 35.39 - samples/sec: 2319.05 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 15:39:27,548 epoch 9 - iter 882/1476 - loss 0.00936287 - time (sec): 42.43 - samples/sec: 2299.14 - lr: 0.000005 - momentum: 0.000000 |
|
2023-10-13 15:39:34,580 epoch 9 - iter 1029/1476 - loss 0.00958077 - time (sec): 49.46 - samples/sec: 2324.33 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 15:39:41,934 epoch 9 - iter 1176/1476 - loss 0.00917407 - time (sec): 56.81 - samples/sec: 2329.00 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 15:39:48,949 epoch 9 - iter 1323/1476 - loss 0.00951637 - time (sec): 63.83 - samples/sec: 2333.50 - lr: 0.000004 - momentum: 0.000000 |
|
2023-10-13 15:39:55,997 epoch 9 - iter 1470/1476 - loss 0.00949339 - time (sec): 70.87 - samples/sec: 2341.48 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 15:39:56,255 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:39:56,255 EPOCH 9 done: loss 0.0095 - lr: 0.000003 |
|
2023-10-13 15:40:07,445 DEV : loss 0.21117821335792542 - f1-score (micro avg) 0.8314 |
|
2023-10-13 15:40:07,474 saving best model |
|
2023-10-13 15:40:08,082 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:40:14,953 epoch 10 - iter 147/1476 - loss 0.00930289 - time (sec): 6.86 - samples/sec: 2352.47 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 15:40:24,876 epoch 10 - iter 294/1476 - loss 0.00642253 - time (sec): 16.79 - samples/sec: 2124.43 - lr: 0.000003 - momentum: 0.000000 |
|
2023-10-13 15:40:31,972 epoch 10 - iter 441/1476 - loss 0.00573633 - time (sec): 23.88 - samples/sec: 2164.66 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 15:40:38,711 epoch 10 - iter 588/1476 - loss 0.00534887 - time (sec): 30.62 - samples/sec: 2199.43 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 15:40:45,486 epoch 10 - iter 735/1476 - loss 0.00493565 - time (sec): 37.40 - samples/sec: 2211.92 - lr: 0.000002 - momentum: 0.000000 |
|
2023-10-13 15:40:52,210 epoch 10 - iter 882/1476 - loss 0.00519681 - time (sec): 44.12 - samples/sec: 2220.79 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 15:40:59,407 epoch 10 - iter 1029/1476 - loss 0.00566250 - time (sec): 51.32 - samples/sec: 2248.33 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 15:41:06,385 epoch 10 - iter 1176/1476 - loss 0.00599606 - time (sec): 58.30 - samples/sec: 2261.89 - lr: 0.000001 - momentum: 0.000000 |
|
2023-10-13 15:41:13,308 epoch 10 - iter 1323/1476 - loss 0.00567523 - time (sec): 65.22 - samples/sec: 2267.40 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-13 15:41:21,239 epoch 10 - iter 1470/1476 - loss 0.00589442 - time (sec): 73.15 - samples/sec: 2269.93 - lr: 0.000000 - momentum: 0.000000 |
|
2023-10-13 15:41:21,549 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:41:21,549 EPOCH 10 done: loss 0.0059 - lr: 0.000000 |
|
2023-10-13 15:41:33,106 DEV : loss 0.2184198498725891 - f1-score (micro avg) 0.8284 |
|
2023-10-13 15:41:33,638 ---------------------------------------------------------------------------------------------------- |
|
2023-10-13 15:41:33,640 Loading model from best epoch ... |
|
2023-10-13 15:41:35,214 SequenceTagger predicts: Dictionary with 21 tags: O, S-loc, B-loc, E-loc, I-loc, S-pers, B-pers, E-pers, I-pers, S-org, B-org, E-org, I-org, S-time, B-time, E-time, I-time, S-prod, B-prod, E-prod, I-prod |
|
2023-10-13 15:41:41,298 |
|
Results: |
|
- F-score (micro) 0.7927 |
|
- F-score (macro) 0.6875 |
|
- Accuracy 0.6802 |
|
|
|
By class: |
|
precision recall f1-score support |
|
|
|
loc 0.8710 0.8660 0.8685 858 |
|
pers 0.7522 0.7970 0.7740 537 |
|
org 0.5127 0.6136 0.5586 132 |
|
prod 0.6724 0.6393 0.6555 61 |
|
time 0.5397 0.6296 0.5812 54 |
|
|
|
micro avg 0.7790 0.8069 0.7927 1642 |
|
macro avg 0.6696 0.7091 0.6875 1642 |
|
weighted avg 0.7851 0.8069 0.7953 1642 |
|
|
|
2023-10-13 15:41:41,299 ---------------------------------------------------------------------------------------------------- |
|
|