File size: 23,904 Bytes
93a8540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
2023-10-17 10:59:11,153 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:11,154 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 10:59:11,154 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:11,155 MultiCorpus: 966 train + 219 dev + 204 test sentences
 - NER_HIPE_2022 Corpus: 966 train + 219 dev + 204 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/fr/with_doc_seperator
2023-10-17 10:59:11,155 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:11,155 Train:  966 sentences
2023-10-17 10:59:11,155         (train_with_dev=False, train_with_test=False)
2023-10-17 10:59:11,155 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:11,155 Training Params:
2023-10-17 10:59:11,155  - learning_rate: "5e-05" 
2023-10-17 10:59:11,155  - mini_batch_size: "8"
2023-10-17 10:59:11,155  - max_epochs: "10"
2023-10-17 10:59:11,155  - shuffle: "True"
2023-10-17 10:59:11,155 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:11,155 Plugins:
2023-10-17 10:59:11,155  - TensorboardLogger
2023-10-17 10:59:11,155  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 10:59:11,155 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:11,155 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 10:59:11,155  - metric: "('micro avg', 'f1-score')"
2023-10-17 10:59:11,155 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:11,155 Computation:
2023-10-17 10:59:11,155  - compute on device: cuda:0
2023-10-17 10:59:11,155  - embedding storage: none
2023-10-17 10:59:11,155 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:11,155 Model training base path: "hmbench-ajmc/fr-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-4"
2023-10-17 10:59:11,155 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:11,155 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:11,156 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 10:59:11,922 epoch 1 - iter 12/121 - loss 4.03984930 - time (sec): 0.77 - samples/sec: 3147.08 - lr: 0.000005 - momentum: 0.000000
2023-10-17 10:59:12,693 epoch 1 - iter 24/121 - loss 3.48446989 - time (sec): 1.54 - samples/sec: 3092.14 - lr: 0.000010 - momentum: 0.000000
2023-10-17 10:59:13,455 epoch 1 - iter 36/121 - loss 2.67791785 - time (sec): 2.30 - samples/sec: 3076.89 - lr: 0.000014 - momentum: 0.000000
2023-10-17 10:59:14,250 epoch 1 - iter 48/121 - loss 2.12343318 - time (sec): 3.09 - samples/sec: 3155.57 - lr: 0.000019 - momentum: 0.000000
2023-10-17 10:59:14,963 epoch 1 - iter 60/121 - loss 1.83639393 - time (sec): 3.81 - samples/sec: 3164.40 - lr: 0.000024 - momentum: 0.000000
2023-10-17 10:59:15,774 epoch 1 - iter 72/121 - loss 1.59197735 - time (sec): 4.62 - samples/sec: 3166.88 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:59:16,559 epoch 1 - iter 84/121 - loss 1.38890453 - time (sec): 5.40 - samples/sec: 3203.74 - lr: 0.000034 - momentum: 0.000000
2023-10-17 10:59:17,384 epoch 1 - iter 96/121 - loss 1.23617388 - time (sec): 6.23 - samples/sec: 3230.26 - lr: 0.000039 - momentum: 0.000000
2023-10-17 10:59:18,103 epoch 1 - iter 108/121 - loss 1.14774163 - time (sec): 6.95 - samples/sec: 3218.01 - lr: 0.000044 - momentum: 0.000000
2023-10-17 10:59:18,839 epoch 1 - iter 120/121 - loss 1.06464850 - time (sec): 7.68 - samples/sec: 3203.69 - lr: 0.000049 - momentum: 0.000000
2023-10-17 10:59:18,889 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:18,889 EPOCH 1 done: loss 1.0617 - lr: 0.000049
2023-10-17 10:59:19,489 DEV : loss 0.1961672157049179 - f1-score (micro avg)  0.6743
2023-10-17 10:59:19,496 saving best model
2023-10-17 10:59:19,852 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:20,572 epoch 2 - iter 12/121 - loss 0.15827254 - time (sec): 0.72 - samples/sec: 3192.69 - lr: 0.000049 - momentum: 0.000000
2023-10-17 10:59:21,293 epoch 2 - iter 24/121 - loss 0.17582748 - time (sec): 1.44 - samples/sec: 3244.43 - lr: 0.000049 - momentum: 0.000000
2023-10-17 10:59:22,031 epoch 2 - iter 36/121 - loss 0.17655963 - time (sec): 2.18 - samples/sec: 3262.17 - lr: 0.000048 - momentum: 0.000000
2023-10-17 10:59:22,756 epoch 2 - iter 48/121 - loss 0.17537386 - time (sec): 2.90 - samples/sec: 3279.04 - lr: 0.000048 - momentum: 0.000000
2023-10-17 10:59:23,488 epoch 2 - iter 60/121 - loss 0.17240823 - time (sec): 3.63 - samples/sec: 3367.13 - lr: 0.000047 - momentum: 0.000000
2023-10-17 10:59:24,179 epoch 2 - iter 72/121 - loss 0.16952158 - time (sec): 4.33 - samples/sec: 3361.95 - lr: 0.000047 - momentum: 0.000000
2023-10-17 10:59:24,925 epoch 2 - iter 84/121 - loss 0.17046832 - time (sec): 5.07 - samples/sec: 3379.50 - lr: 0.000046 - momentum: 0.000000
2023-10-17 10:59:25,682 epoch 2 - iter 96/121 - loss 0.16917879 - time (sec): 5.83 - samples/sec: 3376.28 - lr: 0.000046 - momentum: 0.000000
2023-10-17 10:59:26,409 epoch 2 - iter 108/121 - loss 0.17347387 - time (sec): 6.56 - samples/sec: 3375.46 - lr: 0.000045 - momentum: 0.000000
2023-10-17 10:59:27,143 epoch 2 - iter 120/121 - loss 0.16878218 - time (sec): 7.29 - samples/sec: 3369.89 - lr: 0.000045 - momentum: 0.000000
2023-10-17 10:59:27,212 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:27,212 EPOCH 2 done: loss 0.1677 - lr: 0.000045
2023-10-17 10:59:27,952 DEV : loss 0.1310185343027115 - f1-score (micro avg)  0.7902
2023-10-17 10:59:27,957 saving best model
2023-10-17 10:59:28,419 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:29,178 epoch 3 - iter 12/121 - loss 0.10826741 - time (sec): 0.76 - samples/sec: 3195.99 - lr: 0.000044 - momentum: 0.000000
2023-10-17 10:59:29,975 epoch 3 - iter 24/121 - loss 0.10014281 - time (sec): 1.55 - samples/sec: 3198.69 - lr: 0.000043 - momentum: 0.000000
2023-10-17 10:59:30,789 epoch 3 - iter 36/121 - loss 0.08852980 - time (sec): 2.37 - samples/sec: 3253.47 - lr: 0.000043 - momentum: 0.000000
2023-10-17 10:59:31,523 epoch 3 - iter 48/121 - loss 0.09054614 - time (sec): 3.10 - samples/sec: 3269.07 - lr: 0.000042 - momentum: 0.000000
2023-10-17 10:59:32,308 epoch 3 - iter 60/121 - loss 0.09464846 - time (sec): 3.89 - samples/sec: 3230.95 - lr: 0.000042 - momentum: 0.000000
2023-10-17 10:59:33,063 epoch 3 - iter 72/121 - loss 0.09297356 - time (sec): 4.64 - samples/sec: 3236.86 - lr: 0.000041 - momentum: 0.000000
2023-10-17 10:59:33,835 epoch 3 - iter 84/121 - loss 0.09444515 - time (sec): 5.41 - samples/sec: 3252.57 - lr: 0.000041 - momentum: 0.000000
2023-10-17 10:59:34,496 epoch 3 - iter 96/121 - loss 0.09242019 - time (sec): 6.07 - samples/sec: 3222.44 - lr: 0.000040 - momentum: 0.000000
2023-10-17 10:59:35,321 epoch 3 - iter 108/121 - loss 0.09432936 - time (sec): 6.90 - samples/sec: 3234.89 - lr: 0.000040 - momentum: 0.000000
2023-10-17 10:59:36,015 epoch 3 - iter 120/121 - loss 0.09658269 - time (sec): 7.59 - samples/sec: 3233.86 - lr: 0.000039 - momentum: 0.000000
2023-10-17 10:59:36,063 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:36,063 EPOCH 3 done: loss 0.0974 - lr: 0.000039
2023-10-17 10:59:36,968 DEV : loss 0.1393728405237198 - f1-score (micro avg)  0.7876
2023-10-17 10:59:36,973 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:37,680 epoch 4 - iter 12/121 - loss 0.08865884 - time (sec): 0.71 - samples/sec: 2936.04 - lr: 0.000038 - momentum: 0.000000
2023-10-17 10:59:38,402 epoch 4 - iter 24/121 - loss 0.08219893 - time (sec): 1.43 - samples/sec: 3193.06 - lr: 0.000038 - momentum: 0.000000
2023-10-17 10:59:39,132 epoch 4 - iter 36/121 - loss 0.07077621 - time (sec): 2.16 - samples/sec: 3224.72 - lr: 0.000037 - momentum: 0.000000
2023-10-17 10:59:39,924 epoch 4 - iter 48/121 - loss 0.07382872 - time (sec): 2.95 - samples/sec: 3239.62 - lr: 0.000037 - momentum: 0.000000
2023-10-17 10:59:40,673 epoch 4 - iter 60/121 - loss 0.07391026 - time (sec): 3.70 - samples/sec: 3303.16 - lr: 0.000036 - momentum: 0.000000
2023-10-17 10:59:41,351 epoch 4 - iter 72/121 - loss 0.07389219 - time (sec): 4.38 - samples/sec: 3292.30 - lr: 0.000036 - momentum: 0.000000
2023-10-17 10:59:42,120 epoch 4 - iter 84/121 - loss 0.07656404 - time (sec): 5.15 - samples/sec: 3267.91 - lr: 0.000035 - momentum: 0.000000
2023-10-17 10:59:42,924 epoch 4 - iter 96/121 - loss 0.07249895 - time (sec): 5.95 - samples/sec: 3252.09 - lr: 0.000035 - momentum: 0.000000
2023-10-17 10:59:43,744 epoch 4 - iter 108/121 - loss 0.07277711 - time (sec): 6.77 - samples/sec: 3235.49 - lr: 0.000034 - momentum: 0.000000
2023-10-17 10:59:44,483 epoch 4 - iter 120/121 - loss 0.07000959 - time (sec): 7.51 - samples/sec: 3279.76 - lr: 0.000034 - momentum: 0.000000
2023-10-17 10:59:44,536 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:44,537 EPOCH 4 done: loss 0.0697 - lr: 0.000034
2023-10-17 10:59:45,299 DEV : loss 0.14459875226020813 - f1-score (micro avg)  0.8271
2023-10-17 10:59:45,304 saving best model
2023-10-17 10:59:45,866 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:46,629 epoch 5 - iter 12/121 - loss 0.02887476 - time (sec): 0.76 - samples/sec: 2855.60 - lr: 0.000033 - momentum: 0.000000
2023-10-17 10:59:47,382 epoch 5 - iter 24/121 - loss 0.04306695 - time (sec): 1.51 - samples/sec: 2936.78 - lr: 0.000032 - momentum: 0.000000
2023-10-17 10:59:48,156 epoch 5 - iter 36/121 - loss 0.04116509 - time (sec): 2.29 - samples/sec: 3078.29 - lr: 0.000032 - momentum: 0.000000
2023-10-17 10:59:48,932 epoch 5 - iter 48/121 - loss 0.04444591 - time (sec): 3.06 - samples/sec: 3059.29 - lr: 0.000031 - momentum: 0.000000
2023-10-17 10:59:49,642 epoch 5 - iter 60/121 - loss 0.04296924 - time (sec): 3.77 - samples/sec: 3119.81 - lr: 0.000031 - momentum: 0.000000
2023-10-17 10:59:50,439 epoch 5 - iter 72/121 - loss 0.04428424 - time (sec): 4.57 - samples/sec: 3190.03 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:59:51,138 epoch 5 - iter 84/121 - loss 0.04849569 - time (sec): 5.27 - samples/sec: 3198.35 - lr: 0.000030 - momentum: 0.000000
2023-10-17 10:59:51,883 epoch 5 - iter 96/121 - loss 0.04770451 - time (sec): 6.01 - samples/sec: 3216.01 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:59:52,654 epoch 5 - iter 108/121 - loss 0.04792742 - time (sec): 6.78 - samples/sec: 3223.52 - lr: 0.000029 - momentum: 0.000000
2023-10-17 10:59:53,460 epoch 5 - iter 120/121 - loss 0.04620569 - time (sec): 7.59 - samples/sec: 3247.60 - lr: 0.000028 - momentum: 0.000000
2023-10-17 10:59:53,506 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:53,506 EPOCH 5 done: loss 0.0463 - lr: 0.000028
2023-10-17 10:59:54,274 DEV : loss 0.17430146038532257 - f1-score (micro avg)  0.8213
2023-10-17 10:59:54,279 ----------------------------------------------------------------------------------------------------
2023-10-17 10:59:55,044 epoch 6 - iter 12/121 - loss 0.01847800 - time (sec): 0.76 - samples/sec: 3208.68 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:59:55,824 epoch 6 - iter 24/121 - loss 0.03217283 - time (sec): 1.54 - samples/sec: 3204.69 - lr: 0.000027 - momentum: 0.000000
2023-10-17 10:59:56,586 epoch 6 - iter 36/121 - loss 0.02784672 - time (sec): 2.31 - samples/sec: 3258.56 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:59:57,301 epoch 6 - iter 48/121 - loss 0.03009212 - time (sec): 3.02 - samples/sec: 3219.73 - lr: 0.000026 - momentum: 0.000000
2023-10-17 10:59:58,064 epoch 6 - iter 60/121 - loss 0.02992772 - time (sec): 3.78 - samples/sec: 3228.02 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:59:58,730 epoch 6 - iter 72/121 - loss 0.03460899 - time (sec): 4.45 - samples/sec: 3206.50 - lr: 0.000025 - momentum: 0.000000
2023-10-17 10:59:59,551 epoch 6 - iter 84/121 - loss 0.03594070 - time (sec): 5.27 - samples/sec: 3236.97 - lr: 0.000024 - momentum: 0.000000
2023-10-17 11:00:00,296 epoch 6 - iter 96/121 - loss 0.03447924 - time (sec): 6.02 - samples/sec: 3248.21 - lr: 0.000024 - momentum: 0.000000
2023-10-17 11:00:01,069 epoch 6 - iter 108/121 - loss 0.03462584 - time (sec): 6.79 - samples/sec: 3230.49 - lr: 0.000023 - momentum: 0.000000
2023-10-17 11:00:01,843 epoch 6 - iter 120/121 - loss 0.03552862 - time (sec): 7.56 - samples/sec: 3248.07 - lr: 0.000022 - momentum: 0.000000
2023-10-17 11:00:01,896 ----------------------------------------------------------------------------------------------------
2023-10-17 11:00:01,896 EPOCH 6 done: loss 0.0353 - lr: 0.000022
2023-10-17 11:00:02,659 DEV : loss 0.18103647232055664 - f1-score (micro avg)  0.8313
2023-10-17 11:00:02,665 saving best model
2023-10-17 11:00:03,141 ----------------------------------------------------------------------------------------------------
2023-10-17 11:00:03,919 epoch 7 - iter 12/121 - loss 0.00538440 - time (sec): 0.78 - samples/sec: 3084.81 - lr: 0.000022 - momentum: 0.000000
2023-10-17 11:00:04,636 epoch 7 - iter 24/121 - loss 0.01679636 - time (sec): 1.49 - samples/sec: 3120.00 - lr: 0.000021 - momentum: 0.000000
2023-10-17 11:00:05,357 epoch 7 - iter 36/121 - loss 0.01730532 - time (sec): 2.21 - samples/sec: 3266.30 - lr: 0.000021 - momentum: 0.000000
2023-10-17 11:00:06,130 epoch 7 - iter 48/121 - loss 0.01620835 - time (sec): 2.99 - samples/sec: 3235.73 - lr: 0.000020 - momentum: 0.000000
2023-10-17 11:00:06,936 epoch 7 - iter 60/121 - loss 0.01692553 - time (sec): 3.79 - samples/sec: 3232.05 - lr: 0.000020 - momentum: 0.000000
2023-10-17 11:00:07,684 epoch 7 - iter 72/121 - loss 0.01923634 - time (sec): 4.54 - samples/sec: 3210.04 - lr: 0.000019 - momentum: 0.000000
2023-10-17 11:00:08,439 epoch 7 - iter 84/121 - loss 0.01934951 - time (sec): 5.30 - samples/sec: 3195.12 - lr: 0.000019 - momentum: 0.000000
2023-10-17 11:00:09,176 epoch 7 - iter 96/121 - loss 0.01857928 - time (sec): 6.03 - samples/sec: 3222.90 - lr: 0.000018 - momentum: 0.000000
2023-10-17 11:00:09,963 epoch 7 - iter 108/121 - loss 0.02199051 - time (sec): 6.82 - samples/sec: 3232.32 - lr: 0.000017 - momentum: 0.000000
2023-10-17 11:00:10,726 epoch 7 - iter 120/121 - loss 0.02166981 - time (sec): 7.58 - samples/sec: 3249.58 - lr: 0.000017 - momentum: 0.000000
2023-10-17 11:00:10,778 ----------------------------------------------------------------------------------------------------
2023-10-17 11:00:10,779 EPOCH 7 done: loss 0.0216 - lr: 0.000017
2023-10-17 11:00:11,528 DEV : loss 0.21778880059719086 - f1-score (micro avg)  0.8219
2023-10-17 11:00:11,533 ----------------------------------------------------------------------------------------------------
2023-10-17 11:00:12,264 epoch 8 - iter 12/121 - loss 0.02496822 - time (sec): 0.73 - samples/sec: 2937.07 - lr: 0.000016 - momentum: 0.000000
2023-10-17 11:00:13,009 epoch 8 - iter 24/121 - loss 0.02109802 - time (sec): 1.48 - samples/sec: 3251.41 - lr: 0.000016 - momentum: 0.000000
2023-10-17 11:00:13,747 epoch 8 - iter 36/121 - loss 0.01936223 - time (sec): 2.21 - samples/sec: 3235.36 - lr: 0.000015 - momentum: 0.000000
2023-10-17 11:00:14,553 epoch 8 - iter 48/121 - loss 0.01994877 - time (sec): 3.02 - samples/sec: 3318.25 - lr: 0.000015 - momentum: 0.000000
2023-10-17 11:00:15,315 epoch 8 - iter 60/121 - loss 0.01807436 - time (sec): 3.78 - samples/sec: 3314.06 - lr: 0.000014 - momentum: 0.000000
2023-10-17 11:00:16,041 epoch 8 - iter 72/121 - loss 0.01570418 - time (sec): 4.51 - samples/sec: 3324.75 - lr: 0.000014 - momentum: 0.000000
2023-10-17 11:00:16,740 epoch 8 - iter 84/121 - loss 0.01662327 - time (sec): 5.21 - samples/sec: 3297.61 - lr: 0.000013 - momentum: 0.000000
2023-10-17 11:00:17,484 epoch 8 - iter 96/121 - loss 0.01642530 - time (sec): 5.95 - samples/sec: 3299.09 - lr: 0.000013 - momentum: 0.000000
2023-10-17 11:00:18,233 epoch 8 - iter 108/121 - loss 0.01566260 - time (sec): 6.70 - samples/sec: 3321.79 - lr: 0.000012 - momentum: 0.000000
2023-10-17 11:00:19,000 epoch 8 - iter 120/121 - loss 0.01682453 - time (sec): 7.47 - samples/sec: 3296.10 - lr: 0.000011 - momentum: 0.000000
2023-10-17 11:00:19,049 ----------------------------------------------------------------------------------------------------
2023-10-17 11:00:19,049 EPOCH 8 done: loss 0.0168 - lr: 0.000011
2023-10-17 11:00:19,793 DEV : loss 0.20616522431373596 - f1-score (micro avg)  0.8471
2023-10-17 11:00:19,798 saving best model
2023-10-17 11:00:20,275 ----------------------------------------------------------------------------------------------------
2023-10-17 11:00:20,996 epoch 9 - iter 12/121 - loss 0.00858267 - time (sec): 0.72 - samples/sec: 3485.09 - lr: 0.000011 - momentum: 0.000000
2023-10-17 11:00:21,740 epoch 9 - iter 24/121 - loss 0.00850359 - time (sec): 1.46 - samples/sec: 3284.45 - lr: 0.000010 - momentum: 0.000000
2023-10-17 11:00:22,497 epoch 9 - iter 36/121 - loss 0.00987893 - time (sec): 2.22 - samples/sec: 3161.64 - lr: 0.000010 - momentum: 0.000000
2023-10-17 11:00:23,238 epoch 9 - iter 48/121 - loss 0.01135571 - time (sec): 2.96 - samples/sec: 3149.06 - lr: 0.000009 - momentum: 0.000000
2023-10-17 11:00:23,944 epoch 9 - iter 60/121 - loss 0.01031270 - time (sec): 3.66 - samples/sec: 3157.12 - lr: 0.000009 - momentum: 0.000000
2023-10-17 11:00:24,698 epoch 9 - iter 72/121 - loss 0.01012589 - time (sec): 4.42 - samples/sec: 3221.68 - lr: 0.000008 - momentum: 0.000000
2023-10-17 11:00:25,457 epoch 9 - iter 84/121 - loss 0.01006348 - time (sec): 5.18 - samples/sec: 3249.12 - lr: 0.000008 - momentum: 0.000000
2023-10-17 11:00:26,209 epoch 9 - iter 96/121 - loss 0.00959124 - time (sec): 5.93 - samples/sec: 3289.50 - lr: 0.000007 - momentum: 0.000000
2023-10-17 11:00:27,012 epoch 9 - iter 108/121 - loss 0.01110604 - time (sec): 6.73 - samples/sec: 3297.45 - lr: 0.000006 - momentum: 0.000000
2023-10-17 11:00:27,767 epoch 9 - iter 120/121 - loss 0.01135045 - time (sec): 7.49 - samples/sec: 3285.16 - lr: 0.000006 - momentum: 0.000000
2023-10-17 11:00:27,818 ----------------------------------------------------------------------------------------------------
2023-10-17 11:00:27,818 EPOCH 9 done: loss 0.0113 - lr: 0.000006
2023-10-17 11:00:28,558 DEV : loss 0.22430478036403656 - f1-score (micro avg)  0.8344
2023-10-17 11:00:28,563 ----------------------------------------------------------------------------------------------------
2023-10-17 11:00:29,271 epoch 10 - iter 12/121 - loss 0.00114275 - time (sec): 0.71 - samples/sec: 3349.89 - lr: 0.000005 - momentum: 0.000000
2023-10-17 11:00:30,014 epoch 10 - iter 24/121 - loss 0.00352745 - time (sec): 1.45 - samples/sec: 3148.72 - lr: 0.000005 - momentum: 0.000000
2023-10-17 11:00:30,762 epoch 10 - iter 36/121 - loss 0.00508865 - time (sec): 2.20 - samples/sec: 3258.73 - lr: 0.000004 - momentum: 0.000000
2023-10-17 11:00:31,488 epoch 10 - iter 48/121 - loss 0.00574434 - time (sec): 2.92 - samples/sec: 3315.20 - lr: 0.000004 - momentum: 0.000000
2023-10-17 11:00:32,294 epoch 10 - iter 60/121 - loss 0.01005490 - time (sec): 3.73 - samples/sec: 3408.82 - lr: 0.000003 - momentum: 0.000000
2023-10-17 11:00:33,000 epoch 10 - iter 72/121 - loss 0.00878139 - time (sec): 4.44 - samples/sec: 3351.85 - lr: 0.000003 - momentum: 0.000000
2023-10-17 11:00:33,751 epoch 10 - iter 84/121 - loss 0.00826920 - time (sec): 5.19 - samples/sec: 3290.92 - lr: 0.000002 - momentum: 0.000000
2023-10-17 11:00:34,538 epoch 10 - iter 96/121 - loss 0.00749286 - time (sec): 5.97 - samples/sec: 3298.47 - lr: 0.000001 - momentum: 0.000000
2023-10-17 11:00:35,317 epoch 10 - iter 108/121 - loss 0.00742557 - time (sec): 6.75 - samples/sec: 3321.00 - lr: 0.000001 - momentum: 0.000000
2023-10-17 11:00:36,004 epoch 10 - iter 120/121 - loss 0.00724469 - time (sec): 7.44 - samples/sec: 3303.38 - lr: 0.000000 - momentum: 0.000000
2023-10-17 11:00:36,061 ----------------------------------------------------------------------------------------------------
2023-10-17 11:00:36,062 EPOCH 10 done: loss 0.0072 - lr: 0.000000
2023-10-17 11:00:36,815 DEV : loss 0.2359585165977478 - f1-score (micro avg)  0.8375
2023-10-17 11:00:37,205 ----------------------------------------------------------------------------------------------------
2023-10-17 11:00:37,206 Loading model from best epoch ...
2023-10-17 11:00:38,619 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-object, B-object, E-object, I-object, S-date, B-date, E-date, I-date
2023-10-17 11:00:39,465 
Results:
- F-score (micro) 0.8174
- F-score (macro) 0.5799
- Accuracy 0.7075

By class:
              precision    recall  f1-score   support

        pers     0.8652    0.8777    0.8714       139
       scope     0.8321    0.8837    0.8571       129
        work     0.6630    0.7625    0.7093        80
         loc     0.7500    0.3333    0.4615         9
        date     0.0000    0.0000    0.0000         3

   micro avg     0.8021    0.8333    0.8174       360
   macro avg     0.6221    0.5715    0.5799       360
weighted avg     0.7984    0.8333    0.8128       360

2023-10-17 11:00:39,466 ----------------------------------------------------------------------------------------------------